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Clustering of neural code words revealed by a first-order phase transition
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A network of neurons in the central nervous system collectively represents information by its spiking activity
states. Typically observed states, i.e., code words, occupy only a limited portion of the state space due to
constraints imposed by network interactions. Geometrical organization of code words in the state space, critical
for neural information processing, is poorly understood due to its high dimensionality. Here, we explore the
organization of neural code words using retinal data by computing the entropy of code words as a function of
Hamming distance from a particular reference codeword. Specifically, we report that the retinal code words in
the state space are divided into multiple distinct clusters separated by entropy-gaps, and that this structure is
shared with well-known associative memory networks in a recallable phase. Our analysis also elucidates a special
nature of the all-silent state. The all-silent state is surrounded by the densest cluster of code words and located
within a reachable distance from most code words. This code-word space structure quantitatively predicts typical
deviation of a state-trajectory from its initial state. Altogether, our findings reveal a non-trivial heterogeneous
structure of the code-word space that shapes information representation in a biological network.
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I. INTRODUCTION

Recent advances in multi-electrode recording techniques
allow simultaneous measurements of neural activity from a
large population of interacting neurons [1,2]. A population
of neurons encodes various information by its collective
spiking activity patterns, namely, neural code words [3]. These
code words are passed and interpreted by a downstream
circuit for further information processing. Characterizing the
organization of the code words is therefore critical for our
understanding of neural coding.

To characterize the distribution of code words, a maximum
entropy model [4] with pairwise interaction terms has been
fitted to neuroscience data [5,6]. This model that fits the first
two moments of activity statistics was reported to characterize
real data well in small groups of neurons. Importantly, these
studies also suggest that code words are restricted due to neural
interactions within a small subset of the state space, namely, the
space composed of all possible combinations of each neuron’s
binary activity. However, the geometrical organization of code
words is not well understood.

Interestingly, the code words of the well-known Hopfield
network [7] are also restricted within a small subset of
state space due to strong constraints imposed by interactions
between neurons. The state space of the Hopfield network
is organized into multiple basins of attraction [8], with
which a simple Glauber dynamics [9] can recall one of
memorized patterns hinted by a distorted initial pattern. This
is the so-called associative memory [7,8]. Although both the
neuroscience model described above and the Hopfield network
belong to the pairwise maximum entropy model, it remains
largely unknown if their code-word spaces, composed of all
code words, share common features. Recent investigation of
retinal activity data revealed multiple local energy minima
(LEM) in a fitted maximum entropy model [10]. However, it
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does not provide how neural code words are geometrically
organized because demonstration of the code-word space
structure entails consideration of all possible states.

The high dimensionality of the state space prevents an
exhaustive search except in small networks, and standard
dimensionality-reduction techniques can easily abolish un-
derlying structure by neglecting many relevant dimensions.
Hence, an efficient new technique is in need to visualize
the neural code-word space. One insight is that distance
between code words is an important factor that constrains
neural dynamics—previous experiments have shown that
state transitions are mostly restricted to neighboring code
words and nearby code words are known to encode similar
information [11,12]. Based on this observation, we propose
the distance-constrained statistical mechanics analysis [13,14]
to concisely characterize the code-word space structure based
on the distance from a reference code word. In particular,
we present an advanced mean-field framework that computes
the entropy of code-words as a function of Hamming distance
from any reference state. By applying this technique to both the
Hopfield network and retinal data, we explore their code-word
space structures, i.e., whether code words are divided into
multiple clusters.

II. RESULTS

A. Distance-constrained statistical mechanics analysis

We first introduce a statistical mechanics framework to
characterize code word organization in the state space.
Let σi be binary activity of neuron i (i = 1, . . . ,N) and
σ = (σ1, . . . ,σN )T be a state vector, representing population
activity of N neurons. Here σi = 1 indicates that neuron i

is active and σi = −1 indicates that neuron i is silent. The
symbol T represents the transpose operation.

According to the maximum entropy principle [4], the
activity state follows the Boltzmann distribution P (σ ) ∝
exp(−βE(σ )), where β is the inverse temperature or neural
reliability (β = 1 unless otherwise indicated) and the energy
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(a) (b)

FIG. 1. Code word organization of standard Hopfield model (P = 3) with low spiking rate constraint of stored patterns. (a) A first-order
phase transition in Hamming distance d when the coupling field x is tuned. The reference pattern is the one with four spikes [see (b)]. The
inset shows that the first order transition vanishes in the high temperature regime (β = 0.2). (b) entropy per neuron as a function of Hamming
distance from a reference stored pattern with different spike-counts. The pattern with zero spike-count is named all-silent (AS) state. The
curves correspond to the low-d branch of the hysteresis loop [see (a)]. The inset shows a trivial entropy landscape identical for all references
in high-temperature regime.

E(σ ) = −hT σ − 1
2σ T Jσ . h denotes a spiking bias vector and

J a functional coupling matrix. Geometrical organization of
code words is studied by introducing a modified probability
distribution P (σ ) ∝ exp(−βE(σ ) + xσ T σ ∗), where coupling
field x is introduced to control the overlap σ T σ ∗ between state
σ and reference one σ ∗. This perturbed probability measure
gives the free energy per neuron defined by

f ≡ − 1

βN
log

∑
σ

exp(−βE(σ ) + xσ T σ ∗)

= − 1

βN

∫∫
dεdq exp (−Nβf (ε,q)), (1)

where

βf (ε,q) ≡ βε − xq − s(ε,q) (2)

is the energy- and overlap-dependent free energy that charac-
terizes the probability of states having energy Nε and over-
lap Nq, and s(ε,q) ≡ (1/N) log

∑
σ δ(ε − E(σ )/N)δ(q −

σ T σ ∗/N )) denotes entropy (log-number of states) per neuron
with energy Nε and overlap Nq. If the system-size N is large,
the integral in Eq. (1) is typically dominated by a combination
(ε,q) that minimizes f (ε,q), i.e., f ≈ minε,q f (ε,q).

We compute ε and q that minimize f (ε,q) by applying the
Bethe approximation [15] (see the Appendix). By recursively
solving the mean field equation, we estimate a local (or global)
minimum of the free energy and (ε,q) corresponding to this
minimum. Notably, these values of ε and q characterize the
energy and overlap of typically observed states (namely code
words), respectively. Meanwhile, the entropy of code words
s(ε,q) can be also computed according to Eq. (2). We define
Hamming distance (N − σ T σ ∗)/2 that counts how many
neurons have distinct activity in state σ and reference state σ ∗.
The typical value of the overlap q can be transformed to the
typical value of Hamming distance per neuron d = (1 − q)/2.
In the following sections, we omit the ε dependency of the
entropy and report it as a function of d, i.e., s(d).

B. Clustering of code words in the Hopfield model

Using the mean field method, we first investigate the
structure of code-word space in the Hopfield network [8,16].
In this model, the coupling between neuron i and j is
constructed as Jij = 1/N

∑P
μ=1 ξ

μ

i ξ
μ

j for a network of N =
60 neurons, where P = 3 random binary patterns (indexed
by μ = 1, . . . ,P ) are stored. In each pattern, stored activity
ξ

μ

i of neuron i takes +1 with probability r = 0.0338 and −1
with probability 1 − r . r is chosen to fit the activity level of
retinal neurons we study in the next section. Note that, in the
Hopfield model, the neurons have zero spiking bias parameters
(h = 0). According to the previous section, we compute the
typical distance d as we increase x from −3 to 3, and then
decrease it from 3 to −3 [Fig. 1(a)]. More precisely, after
the convergence of the mean field equations at some x, we
change x by a small amount and restart iteration from the
previous fixed point (see the Appendix). The reference state
σ ∗ is set to one of the stored patterns. Remarkably, we find a
first-order phase transition of d, characterized by the hysteresis
loop [Fig. 1(a)]. As we decrease x from high to low values, the
typical distance suddenly jumps at around x = −1.08 from
d ≈ 0.16 to d ≈ 0.97, implying a non-trivial structure of the
code-word space.

In order to more directly visualize the non-trivial structure
of the code-word space, we plot the entropy of code words
computed at various distance d away from each stored pattern.
Only the entropy values corresponding to the low-d branch
of the hysteresis loop are shown in the figure. As shown
in Fig. 1(b), each stored pattern has a dense core of code
words around itself, which discontinuously falls off at some
distance. This indicates that code words are organized into
multiple clusters, separated by non-code-word states (i.e.,
gaps). Among three stored patterns, the all-silent (AS) state
has the largest core due to the low spiking rate constraint of
stored patterns (small r).

This clustering results from the attractor structure [16] in the
retrieval phase of the model. Within the hysteresis loop, there
are two local minima of the free energy [Eq. (2)] competing
with each other. Low-d minimum corresponds to the nearby
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FIG. 2. Schematic illustration of two hypotheses on the organization of neural code words in the state space. Each binary neural code word
(σ ) has an energy E(σ ). (a) When neural interactions are strong, neural code words can be organized into multiple clusters in the state space.
(b) When the neural population is sufficiently noisy, a trivial structure (a single cluster of neural code words) is observed.

code words of stored patterns (ξ ), while high-d minimum
corresponds to nearby codewords of corresponding reversed
patterns (−ξ ). Thus each stored pattern has distinct entropy
landscape surrounding it. The code-word space clustering is
necessary for successful memory retrieval in the Hopfield
network. In fact, in a high temperature regime (non-recallable
phase), the first-order transition and the non-trivial entropy
landscape are absent, as observed in the insets of Fig. 1. All
reference patterns display the same entropy landscape without
entropy gaps, and thus the patterns can not be distinguished
from each other. In this non-recallable phase of the Hopfield
network, there do exist multiple LEM [see Fig. 2(b)] under
greedy descent dynamics (GDD, see the Appendix) on the
energy surface, while the code-word space structure is trivial
without entropy gaps.

C. Clustering of code words in the retinal network

The next important question is how code words of a real
neural population are organized. To elucidate this question, we
analyze spiking activity data of populations of retinal ganglion
cells under a repeated naturalistic movie stimulus [10,17].
Although multiple LEM were previously found using this
data set [10], it is still unknown if the observed network
has clustering of code words or not [Fig. 2(a)]. We therefore
characterize the geometrical organization of retinal code words
by applying the same method as used in the Hopfield network.

The neural spike trains in a population of N neurons
are binned with a 20 ms temporal resolution to have N -
dimensional spiking states σ . Spiking bias h and functional
coupling J are fitted to the spike train data to reproduce the
mean activity and pairwise correlation of the data (see the
Appendix). We choose randomly a network sample of the size
N = 60 from the neural data (the behavior reported below does
not change qualitatively when another sample is chosen, see
Fig. 4). Despite no clear similarity in the connectivity structure
to the Hopfiled network, the retinal network displays the
first-order phase transition with a hysteresis loop, qualitatively
resembling the Hopfield model [Fig. 3(a)]. This establishes
that code words of the retinal network are also clustered. Fur-
thermore, by constructing an independent maximum entropy
model, where only the mean activity is fitted to the data with
J = 0, we show that the first-order phase transition disappears,

indicating that it is the non-trivial neural correlations that shape
the clustering of code words.

Figure 3(b) shows the entropy as a function of d when
neural code words of different spike-counts are selected as
references. Again, only the entropy values corresponding to
the low-d branch of the hysteresis loop are shown in the
figure. The high-d branch is not biologically plausible, since
the neural code is sparse. The entropy landscape is strongly
dependent of the reference. In general, the higher spike-counts
a neural code word has, the larger distance its entropy curve
extends over, enhancing the ability of the high spike-count
code word to come back to the sparse coding regime around
the AS state. To quantify this property, Fig. 3(c) plots the
maximum distance dmax at which the low-d branch in the
hysteresis loop terminates as a function of spike-counts of
the reference code word. We find that dmax increases linearly
with the spike-counts (distance from the AS state) and the
estimated slope is 0.9462 ± 0.0372. The slope close to one is
also observed in another typical example (see Fig. 4). Note that
the distance to the AS state is typically smaller than dmax. This
implies that, even if the neural code word is far away from the
AS state, it still has easy access to the sparse coding regime
around the AS state within reasonable time, which highlights
the potential role of the AS state [18].

The AS state plays a special role here because the entropy
curve from the AS reference state grows much more rapidly
as a function of distance than from the other code words
[Fig. 3(d)]. Indeed, its growth is close to the upper bound
given by the random code word limit [sub(d) = 1

N
ln( N

Nd)], in
which every state is equally likely. This indicates that the AS
state has the densest core of code words around it, which
would facilitate frequent visits from other neural code words
(see Fig. 5). As previously observed [10], a large portion of
neural patterns (about 94.25% of 2000 patterns) are observed
to evolve to the AS state by following GDD (see the Appendix).

Figure 3(d) reports the distance-dependent entropy land-
scape for some reference LEM code words (e.g., state a)
obtained by running the GDD method starting from corre-
sponding reference non-LEM code words (respectively state
a′) [see the corresponding multidimensional scaling (MDS)
map of LEM in Fig. 6(a)]. The result shows that each reference
has a different landscape, and at small d, the entropy around
a non-LEM code word is typically smaller than that for the
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(a) (b)

(c)
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FIG. 3. Code word organization of the neural data (N = 60). (a) A first-order phase transition in Hamming distance when the coupling
field is tuned. The reference is a code word of ten spike-counts. The neural code-word space structure is shaped by the correlations in the
neural spiking activity. The first-order transition disappears for independent model (IND). dmax defines the distance at which the low-d branch
in the hysteresis loop terminates. (b) Distance-dependent entropy landscape from reference neural code words of different spike-counts. (c)
Maximum distance dmax versus spike-counts of the reference states (distance from AS state). Five references for each spike-count are randomly
chosen. The line is a linear fit. (d) Distance entropy from neural code words (state a′) and their corresponding LEM (state a). The corresponding
LEM are identified by GDD. The random code word limit is the upper bound.

corresponding LEM codeword. Moreover, for some states
(e.g., 3 and 3′), there exist two continuous parts separated
by a gap in the distance entropy curve. We shall elaborate
this phenomenon in the following section by studying a larger
population, where the effect becomes much more evident. This
shows another clear evidence for the clustering of neural code
words.

D. More complicated structure observed
for large neural populations

The property of the neural codeword shown above is still
preserved when large populations of neurons are considered.
In Fig. 7, we show the theoretical result computed on a
network sample of N = 100. As the network size grows, the
number of LEM detected by GDD method also increases.
Accordingly, the internal structure of the code words becomes
more complicated [a rough visualization is given by the MDS
map, see Fig. 6(b)]. As shown in Fig. 7(a), there exist two
hysteresis loops separated by another monostable branch (two
curves for increasing and decreasing x coincide with each
other). These two successive hysteresis loops naturally arise if
there exist three deep minima in the energy landscape, where

sweeping x shifts a dominant contribution from one to another.
Fig. 7(b) shows that dmax grows with spike-counts (distance
from the AS state). The growth is likely nonlinear in this
case, perhaps induced by the complexity of the state space.
The fraction of neural code words that can reach the AS state
without in-between gaps reduces from the result of the previous
section to about 76.05%. Note that this number is still dominant
compared to the reachability of other detected LEM. Again,
the AS state has the densest surrounding core, characterized by
the rapid growth of the entropy with distance [Fig. 7(c)]. The
entropy landscape surrounding the AS state does not have a
second monostable branch beyond the first entropy gap, except
at a biologically implausible distance close to 1. This might be
because there is no deep enough minima around the AS state.
In contrast, the entropy landscape surrounding some other ref-
erence code words, e.g., state 1′, exhibits a second monostable
branch beyond the first entropy gap [see Fig. 7(a)], likely
indicating that there is another deep minimum around them.

To demonstrate the implication of the entropy landscape,
we study how distance from a local energy minimum
changes with time when the neural system explores the
state space. We use the local dynamics rule characterized by
the transition probability w(σi → −σi |Hi) = e−2σiHi , where
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(a) (b)

(c) (d)

(e)

FIG. 4. Entropy landscape of the neural data (N = 60, another typical example). (a) A first-order phase transition in Hamming distance
when the coupling field is tuned. The transition disappears for an independent model (IND). (b) Distance entropy from reference neural code
words of different spike-counts. (c) Maximum distance dmax at which the low-d branch in the hysteresis loop terminates versus spike-counts of
the reference (distance from AS state). Five references for each spike-count are considered. The line is a linear fit (slope=1.041 ± 0.040). (d)
Distance entropy from neural code words and their corresponding LEM. (e) Low-dimensional representation of LEM corresponding to (d) by
multidimensional scaling (MDS) analysis (y,x serve as coordinates). State 0 is the AS state.

Hi = hi + ∑
j Jij σj denotes the effective spiking bias of neu-

ron i. Under this dynamics, states are sampled from the original
distribution P (σ ) ∝ exp (−βE(σ )). Note that the GDD rule
to obtain LEM allows only monotonically decreasing energy
on the energy surface. In contrast, the current dynamics rule
allows the energy to increase occasionally. Sampled distance
from a reference local energy minimum σ ∗ is denoted by
d0(t) = (1 − σ T (t)σ ∗/N )/2 where t denotes the time step.
The mean field prediction dMF

0 of a typical code-word distance
is given by setting x = 0 and initializing the iteration equation

(see the Appendix) at σ ∗. Note that x = 0 corresponds to the
case without distance-constraint, and thus takes into account
all code words in the cluster that σ ∗ belongs to. As expected,
this calculation predicts the fluctuation plateau of d0(t) close
to the reference, as shown in Figs. 8(a) and 8(b). Note that
the local dynamics escapes fast from the AS state [see the
inset of Fig. 8(a)], which may be related to its very small core
[Fig. 7(c)]. The same qualitative behavior holds for the smaller
network (N = 60, see Fig. 9) and when the neural dynamics
is simulated starting from a non-LEM code word.
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(a)

(b)

FIG. 5. Distance or spike-counts evolution of the neural data (N = 60, typical example shown in Fig. 3). The time-dependent Hamming
distance is defined as d(t) ≡ N−∑

i σi (t)σi (t+1)
2 , and the time-dependent spike-counts r(t) ≡ ∑

i δ(σi(t) − 1). (a) The profile for four repeats.
Trial-to-trial variability is observed. (b) The profile for only one repeat. The AS state is frequently visited, and the neural network seems to
explore the state space by local moves.

(a) (b)

−5×10−5

5×10−5

FIG. 6. Low-dimensional representation of LEM (identified by GDD) by multidimensional scaling (MDS) analysis (y,x serve as
coordinates). State 0 is the AS state. (a) MDS map for a population of 60 neurons (see Fig. 3). (b) MDS map for a population of 100 neurons
(see Fig. 7), in which 29 LEM are identified by GDD method. It becomes difficult to represent faithfully these LEM in a low-dimensional space
(some information are lost), nevertheless, the map still shows how they are distributed.
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(a)

(b)

(c)

FIG. 7. Code word organization of the neural data (N = 100).
(a) Two hysteresis loops are observed. The reference is state 1′

[see (c)]. (b) Maximum distance dmax at which the low-d branch
in the hysteresis loop terminates versus spike-counts of the reference
(distance from AS state). Five references for each spike-count are
randomly chosen. (c) Entropy curve for different code words and
their assigned LEM. Complex structure is observed for state 1, 1′,
and 2′.

III. DISCUSSION

In this work, we have established the resemblance of
code word organization between the retinal network and the

Hopfield network. In previous studies, the memory retrieval
function of Hopfield network was empirically compared to
the behavior of real networks [8,10,16,19]. However, no
theoretical framework was proposed to build a solid rela-
tionship between these artificial and real biological networks.
In fact, they are naturally distinct in terms of detailed
parameters. Surprisingly, we have found that the two networks
both similarly organize their code words. The clustering of
codewords has been identified by the first-order phase transi-
tion in the code-word distance. This transition is accompanied
by hysteresis loops, which becomes increasingly complex
as the network size grows. We have also revealed that the
AS state has a distinct role from other codewords. The
number of code words surrounding the AS state always grows
much more rapidly as a function of distance compared to
that surrounding other code words. Interestingly, despite the
presence of entropy gaps, most codewords even far away from
the AS state could still have easy access to it because of their
surrounding dense cores of code words typically extending
beyond the AS state. Thus, the most frequently observed AS
state plays a key role in serving as a hub facilitating neural
exploration of the code-word space.

The only knowledge a neuronal population can have comes
from the population activity of interacting neurons. As shown
in our study, there exists well-designed structure of code words
in the neural state space. The code words are partitioned into
multiple clusters separated by entropy gaps. Moreover, this
emergent property remains even if one-fourth of our data
is used to learn the model (see Fig. 10). Thus the revealed
organization structure is most likely an intrinsic property of
the retinal network, and downstream brain areas may benefit
from this structure for decoding purpose.

The clustering is functionally advantageous and intimately
related to the network function, i.e., pattern completion (error-
correction) and pattern separation (discrimination ability).
Upon repeated presentations of the same visual stimulus,
the neural responses show strong trial-to-trial variability [10].
However, all code words belonging to the same core perhaps
encode the same feature of the semantic information [19]. This
property also allows the neural code to be robust against the
ubiquitous noise in nervous systems [20]. In an analogous
way to error-correcting codes [21,22], even if the neural code
word is corrupted by a small amount of noise, the dense core
structure still allows population coding of stimulus features.
Therefore, the non-trivial internal structure of the neural
code-word space is useful for the neural population not only to
discriminate different neural activity patterns, but also to carry
out error-correction [23,24].

The retina as an early visual system should adapt to the
visual stimulus distribution to efficiently transmit relevant
information to downstream brain areas. The energy landscape
shaped by the neural interactions likely depends on the natural
scene statistics [25]. It is therefore interesting to study their
relationship under the current context.

The code-word space structure quantitatively predicts the
fluctuation plateau of the simulated neural dynamics starting
from LEM. Hence, our analytic framework establishes the
relationship between the simulated neural dynamics and
clustering of code words. In previous studies, the match
between spontaneous neural activity and the stimulus-evoked
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(a) (b)

FIG. 8. Mean field theory predicts the plateau of the distance dynamics starting from LEM [d0(t)]. (a) Typical trajectory observed for
reference AS (inset), states 1 and 2 in simulations. The (solid, dashed, dotted) line is the theoretical prediction computed at x = 0 for each
reference. (b) The fluctuation plateau of d0(t) is predicted by the mean field theory (dMF

0 ). Five trials from the same reference are considered
for each data point. Each trial lasts for 100 steps. Each step corresponds to N proposed flips. Note that in the inset of (a), one step corresponds
to one possible flip. LQ: lower quartile; MED: median; UQ: upper quartile.

activity increases during development especially for natural
stimuli [26], and the spontaneous activity outlines the regime
of evoked neural responses [27]. Our analysis might further

reveal how spontaneous neural activity is related to the
vocabulary of neural code words a neural circuit learns to
internally represent external worlds.

(a) (b)

(c) (d)

FIG. 9. Neural dynamics starting from LEM (d0(t)). (a,b) the network with 60 neurons in the Fig. 3. (c,d) the network with 60 neurons
corresponding to Fig. 4. (a,c) typical trajectory observed in simulations. The (solid, dashed, dotted) line is the theoretical prediction computed
at x = 0 for each reference. (b,d) the fluctuation plateau of d0(t) is predicted by the mean field theory (dMF

0 ). Five trials from the same reference
are considered for each data point. Each trial lasts for 100 steps. LQ: lower quartile; MED: median; UQ: upper quartile.
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FIG. 10. Entropy landscape for N = 60. The same reference
codeword has ten spikes but two data of different lengths are learned.
The problem structure is not affected by the finite sampling of the
data.

Overall, our study provides an important step to understand
the stationary distribution of neural spiking patterns and its
functional relevance, which also sheds light on future studies
of the sensory processing in other brain areas.
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APPENDIX: METHODS

1. Simultaneous recordings of neural activity in populations
of retinal ganglion cells

The spiking activity of 160 retinal ganglion cells was
collected from a 450×450 μm patch of the salamander retina,
when a repeated naturalistic movie was presented. The visual
stimulus consists of 297 repeats of a 19s long movie clip being
a gray movie of swimming fish and swaying water plants in
a tank (data courtesy of Michael J. Berry II, see experimental
details in the original paper [10,17]). The spike train data are
binned with the bin size τ = 20 ms reflecting the temporal
correlation time scale, yielding about 280×103 binary neural
codewords for model analysis.

2. Maximum entropy model

For a neuronal population of size N , the neural spike trains
of duration T are binned at temporal resolution τ , producing
M = �T/τ	 samples of N -dimensional binary neural code
words. We use σi = +1 to indicate spiking activity of neuron
i, and σi = −1 for silent activity. The neural responses to
repeated stimulus are highly variable (so-called trial-to-trial
variability, see Fig. 5). To model the neural code-word statis-
tics, we assign each code word σ a cost function (energy in
statistical physics jargon) E(σ ), then the probability of observ-

ing one code word σ is written as P (σ ) ∝ exp (−E(σ )), where

E(σ ) = −
∑

i

hiσi −
∑
i<j

Jij σiσj . (A1)

The spiking bias hi and neuronal coupling Jij are constructed
from the spike train data such that the spiking rate mi and the
pairwise correlation Cij under the model match those com-
puted from the data. High energy state σ corresponds to low
probability of observation. This is a low-dimensional repre-
sentation of the original high-dimensional neural code words,
since we need only N + N (N − 1)/2 model parameters.

To find the model parameters, we apply the maximum
likelihood learning principle corresponding to maximizing
the log-likelihood P (σ ) with respect to the parameters. The
learning equation is given by

ht+1
i = ht

i + η(〈σi〉data − 〈σi〉model), (A2a)

J t+1
ij = J t

ij + η(〈σiσj 〉data − 〈σiσj 〉model), (A2b)

where t and η denote the learning step and learning rate,
respectively. The maximum likelihood learning shown here
has a simple interpretation of minimizing the Kullback-Leibler
divergence between the empirical probability and the model
probability [28,29]. In the learning equation [Eq. (A2)], the
data dependent terms can be easily computed from the binned
neural data. However, the model expectation of the spiking rate
(magnetization in statistical physics) and pairwise correlation
is quite hard to evaluate without any approximations. Here we
propose the mean field method to tackle this difficulty.

The statistical properties of the model [Eq. (A1)] can be an-
alyzed by the cavity method in the mean field theory [30]. The
self-consistent equations are written in the form of message
passing (detailed derivation is given in Refs. [15,22]) as

mi→a = tanh

⎛
⎝hi +

∑
b∈∂i\a

tanh−1 m̂b→i

⎞
⎠, (A3a)

m̂b→i = tanh 
b

∏
j∈∂b\i

mj→b, (A3b)

where ∂b\i denotes the member of interaction b except i, and
∂i\a denotes the interaction set i is involved in with a removed.

a ≡ Jij and a ≡ (ij ). mi→a is interpreted as the message
passing from the neuron i to the interaction a it participates
in, while m̂b→i is interpreted as the message passing from the
interaction b to its member i. Iteration of the message passing
equation on the inferred model would converge to a fixed point
corresponding to a global (local) minimum of the free energy
(in the cavity method approximation [15])

F ≡ − ln Z = −
∑

i

ln Zi +
∑

a

(|∂a| − 1) ln Za, (A4)

where Z is the normalization constant (partition function)
of the model probability P (σ ). The free energy contribu-
tion of one neuron is − ln Zi = − ln

∑
x=±1 Hi(x), where

Hi(x) ≡ exhi
∏

b∈∂i cosh 
b(1 + xm̂b→i), and the free energy
contribution of one interaction is − ln Za = − ln cosh 
a −
ln (1 + tanh 
a

∏
i∈∂a mi→a). At the same time, the model

062416-9



HAIPING HUANG AND TARO TOYOIZUMI PHYSICAL REVIEW E 93, 062416 (2016)

spiking rate and multi-neuron correlation can also be estimated
as

mi = tanh

(
hi +

∑
b∈∂i

tanh−1 m̂b→i

)
, (A5a)

Ca = tanh 
a + ∏
i∈∂a mi→a

1 + tanh 
a

∏
i∈∂a mi→a

. (A5b)

We have defined mi = 〈σi〉 and Ca = 〈∏i∈∂a σi〉. Note that
the iteration converges in a few steps at each learning stage,
and estimated magnetizations as well as correlations are used
in the gradient ascent learning step. Here the multi-neuron
correlation is calculated directly from the cavity method
approximation [31] and expected to be accurate enough for
current neural data analysis. Another advantage is the low
computational cost. A more accurate expression could be
derived from linear response theory [32] with much more
expensive computational cost.

Finally, one can also estimate the entropy of the model from
the fixed point of the message passing equation. The entropy
is defined as S = −∑

σ P (σ ) ln P (σ ), and it measures the
capacity of the neural population for information transmission.
More obvious variability of the neural responses implies larger
entropy value. Based on the standard thermodynamic relation,
S = −F + E, where E is the energy of the neural population
and given by

E = −
∑

i

�Ei +
∑

a

(|∂a| − 1)�Ea, (A6a)

�Ei = hi

∑
x=±1 xHi(x) + ∑

x=±1 Gi(x)∑
x=±1 Hi(x)

, (A6b)

�Ea = 
a

tanh 
a + ∏
i∈∂a mi→a

1 + tanh 
a

∏
i∈∂a mi→a

, (A6c)

Gi(x) =
∑
b∈∂i

exhi

⎡
⎣
b sinh 
b(1 + xm̂b→i)

+ x
b cosh 
b(1 − tanh2 
b)
∏

j∈∂b\i
mj→b

⎤
⎦

×
∏

a∈∂i\b
cosh 
a(1 + xm̂a→i). (A6d)

3. Distance-constrained entropy analysis

To uncover the internal structure of the neural code-word
space, we introduce a modified probability measure [14]

P (σ ) = 1

Z
exp

⎛
⎝∑

i

βhiσi +
∑
i<j

βJijσiσj + x
∑

i

σ ∗
i σi

⎞
⎠,

(A7)

where β is the inverse temperature or neural reliability, and the
coupling field x is introduced to control the overlap between
the neural code word σ and a reference one σ ∗.

The partition function Z can be approximated by a saddle
point analysis, i.e., Z 
 exp(Ns(d,ε) − βNε + xNq), from

which the free energy per neuron f (density) is given by
−βf = s(d,ε) − βε + xq, where ε is the energy density
(E/N), s(d,ε) the entropy density (S/N ) and q the typical
value of the overlap (σ T σ ∗/N). Note that the Hamming
distance per neuron is related to the overlap by d = (1 − q)/2.
According to the double Legendre transform, the entropy
density is calculated via s(d,ε) = −βf + βε − xq. eNs(d,ε)

counts the number of valid configurations around the reference
satisfying both the distance constraint (d) and the energy
density (ε). Here β controls the energy level and x selects
the overlap or Hamming distance. The overlap q is given by
q = 1

N

∑
i σ

∗
i mi with mi being calculated under the modified

probability measure. (x,β) obeys the following equations:
∂s(d,ε)/∂d = 2x and ∂s(d,ε)/∂ε = β. In this setting, the
above iteration equations [Eq. (A3)] remain unchanged except
that the bias is changed to hi → βhi + xσ ∗

i and the coupling is
rescaled as Jij → βJij . For the real neuronal network, the neu-
ral reliability β = 1, since the constructed biases and couplings
reflect the neural noise observed in the spike train data. For the
Hopfield model, higher β implies weaker thermal fluctuation
and may correspond to a retrieval phase for pattern completion.

Note that to compute the entropy curve for metastable or
unstable branches of distance-coupling field curve, one has to
fix d by searching for compatible coupling field x, e.g., by the
secant method [33].

4. Finding local energy minima from neural activity pattern

To search for a local energy minimum starting from any
given neural activity pattern, we use greedy descent dynamics
(GDD) in the energy landscape [10]. To be more precise, for
each neuron, we flip its activity if the flip will decrease the
energy. If we could not decrease the energy by flipping any
neuron’s activity, then a local energy minimum is identified.
Such minima are also called single-flip stable attractors,
i.e., their energy cannot be decreased by flipping any single
neuron’s activity. We choose randomly a pattern set of size
2000 from the neural data to ensure that any two patterns are
rarely identical. By applying the GDD method, we identify a
LEM set whose size is much smaller than that of the pattern
set, with a large portion of patterns evolving to the all-silent
state. The number of LEM increases with the network size.
These LEM are then expressed in a low-dimensional space
(called multidimensional scaling analysis (MDS) [34]).
MDS represents the proximity between LEM in the high
dimensional space with some degree of fidelity by the distance
between points in the low dimensional space.

5. Independent maximum entropy model

In the case of fitting only the first moments (mean spiking
activity), the distance entropy can be computed exactly. The
result is given by

s(q(x)) = 1

N

∑
i

ln 2 cosh(hi + xσ ∗
i )

− 1

N

∑
i

(hi + xσ ∗
i ) tanh(hi + xσ ∗

i ), (A8)

where hi = 1
2 ln 1+mi

1−mi
and q(x) = 1

N

∑
i σ

∗
i tanh(hi + xσ ∗

i ).
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