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Figure S1. Dimension dependency of EGHR-f relaxation time with f = 0. The
relaxation time is the time needed to perform ICA, where we define that ICA is
achieved when the ratio of first to second maximum absolute values for every row and
column of matrix K = WA is less than threshold e¢; = 0.1. The 2-to-20-dimensional
sources follow a unit Laplace or uniform distribution, and mixing matrix 4 is a square
matrix multiplying a distortion matrix and a random rotation matrix, where the
distortion matrix is defined such that the covariance of inputs becomes cov(x;, x;) = 1
and cov(x;, x;) = 0.4 for i # j. The learning rate of = 1 X 10~ was used, and ¥ was
started from an identity matrix. Simulations were conducted 10 times for each
dimension with different 4. (A) Dimension dependency of the relaxation time with
Laplace sources. Red filled and open circles are the median and maximum relaxation

times, respectively. Yellow filled and open circles are the results of the original EHGR

[4] for comparison. Note that the Laplace prior distribution po(s;) o< exp(—\/E si]) was

assumed to calculate g(u) and E(u). (B) Dimension dependency of the relaxation time
with uniform sources. Blue filled and open circles are the median and maximum
relaxation times, respectively. Green filled and open circles are the results of the
original EHGR [4]. Note that the prior distribution of po(s;) o< exp(—s;'/4) was assumed
to calculate g(u) and E(u). Therefore, the EGHR-f as well as the original EGHR
reliably perform ICA with random mixing matrices and the up-to-20-dimensional

sources without being trapped in spurious solutions.
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Figure S2. Robustness of EGHR-f with f = 0 to a choice of nonlinear function g(u).
Suppose, the two-dimensional sources follow p(s;) «< exp(—b |s{") (a > 0, b is defined
such that the variance of s; is one), and 4 = (cosz/6, —sinz/6; sinz/6, cosn/6) is a rotation
matrix. The same measure of relaxation time as Fig. S1 was plotted, but the threshold
was defined as e; = 0.01. The learning rate of # = 1 x 10~ and the upper bound of
simulation time 7= 1 x 10® were used, and W was started from an identity matrix. Red
and blue circles represent relaxation times with non-linear functions g(u) optimized for
a Laplace distribution (thus a = 1; see the red arrow in the figure) and a uniform
distribution (a¢ = oo; blue arrow), respectively. Filled circles indicate that ICA was
successful with the non-linear function before the 7-th step, while open circles indicate
that ICA was not achieved before the 7-th step. Yellow and green circles are the results
of the original EGHR [4] with non-linear functions g(u) optimized for a Laplace
distribution and a uniform distribution, respectively. Therefore, the EGHR-£ as well as
the original EGHR robustly perform ICA for a range of a (except a = 2, where no ICA

solution exists) by using g(u) designed either for @ = 1 or .



Supplementary Movie

Supplementary Movie 1. Performance of EGHR-3 with natural and noise images. See

the Figure 3 legend and Methods for details.

Supplementary source codes

Supplementary Source Codes 1-3. C-language source codes of EGHR-B that
demonstrate PCA and ICA. See the Figure 2 legend and Methods for details.



Supplementary Methods

S1. Lemma
S1.1 When (o) = | @ py(s) ds and g(s;) = —dlogpo(s;)/ds:, (p(s)g(s)) = {(¢'(s)) holds for
arbitrary function o¢(s).
[Proof]
Since g(s) =—po'(s) / po(s), we have
(0()g(8)) =T 9(8)g(s) po(s) ds =] @(s) po'(s) ds = [ ¢'(s) po(s) ds = ('(s))-
[Proof end]

S1.2 Suppose an MxM square matrix C. When sy, ..., sy independently follow even
distributions p(si), ..., p(sy) with zero mean and unit variance, respectively, we have
((s" C's)ss’y=C+ C"+ tr(C)I + Diag[;C;;]. Note that k; = (s, — 3.
[Proof]
Suppose G ={(s” C's) ss’). Since s’ C's =34 Y Ci sk 51, an element of G is Gij=

Y1 Cu sk s185is;). When i =, since (s;) = (s7)=0, (siz) =1, and <Si4> =K;, + 3, we have

Gii = Yk Cua 5k 57 = Ygeti Cu + Cilsi™) = 2Ci + 1:Cs + tr(C).
When i #j, we have

Gy ={(Cyj+ Cp) s’ 57y = Cy + G
Therefore, we get G = C + C” + tr(C)I + Diag[«;Cj].

[Proof end]

S1.3 Suppose an NxM rectangle matrix C, an M-dimensional vector s = (s, ..., sM)T,
and an N-dimensional vector § =(sy, ..., SN)T . When sy, ..., sy independently follow an
identical even distribution po(s;) with zero mean and unit variance, Syii, ..., Sy

independently follow distributions with zero mean and unit variance, and E(S) — (E(S))
= —log po(S) + (log po(S)) and g'(s;) = O°E(S)/6s? hold, we have ((E(S)~E(S
)))Diag[g'(§)]Css’) = QoC, where o is Hadamard product, Q; = cov(-log po(s)),
2((s)s?) for i =/, and ©; = cov(-log po(s1), €1(s) + cov(-log po(s)), 5°)g (s)YOL<N] for
i #j. Note that ®[j<N] is 1 for j < N and 0 otherwise.



[Proof]

Since E(S) and g'(s;) are even functions,
((E(8)—(E(8))) Diag[g'(8)]Css ) = ( (E(8) —(E(5)) g'(s) >, C,s;5,)

= ((E(8) —(E(8))) g(s)s” )Cy
We define Q; = ( (E(8) — (E(8))) g'(s,)s ). When i =,
Q= (3 (—log polsylog po(sNg ()5 = ((log polsilog po(s)e (557
= cov(-log po(s), '(s)s).-
When i #J,
Q= (3 (—log po(s)log po(sNg ()57

= ({-log po(s)+log po(s)) + (~log po(s;)+log po(s))OL<NT} g (s))s,°)
= ((—log po(s;y+{log po(s))g (s)) + {(—log po(s;y+log po(s)))s; X (s,))OL<N]
= cov(-log po(s), g'(s;)) + cov(—log po(s)), 5,°)(g (s))OL<N].

[Proof end]

S2. Fixed point of the EGHR-f

Suppose that mixing matrix 4 € R consists of 4 = R A'"? B without loss of
generality, where R and B € R are rotation matrices and A € R** is a diagonal
matrix. Moreover, suppose s, ..., sy independently follow even distributions p(s;), ...,
p(su) with zero mean and unit variance. The cost function of the EGHR- is given by

B

1
L= {5 (B —(EW) ~ Ew) + Z((E,~E))+ %tr(WTW» (S1)

where E(u), E, and E, are defined by
E(u) = —log po(u),

1 1 1 1
E,=log N(w) + (log Nw) = — [uf' = = (uf)= —u'u- —(K'K),



Eo=-log N0+ (og N0O) = > ¥~ ()= —xx— utala).  (52)

Note that a, B, and y are constants that control fixed points and the linear stability, in
which a + B = 1 holds without loss of generality. Partial derivative of L by W is given
by
W al(E(u) - Eo) g(u) x7) + BU(Ew — E) u x') +yW (S3)
and the first-order differential form of L is given by
N M aL
dL = —dK;;
Z‘jz; oK,

N M

= Y Y {ol(E(u) - Eo) g(us) 5 + BUES— Ex) ui )} dKy +y Wy dWy

i=1 j=1

= a{(E(u) — Eo) g(w)” du) + BU(E, — Ey) u” du) + ytr(W dw). (S4)

Note that g(u;) = —dlogpo(u;)/du; and Ey = (E(u)) + 1. Since {(s’ C's) ss’)=C+ C" +
tr(C)I + Diag[x;C;;] (where «; = {s*) — 3; see Supplementary Methods S1.2), we have

(E,—E)ux’)= % {(u"a - tr(K'K) — x"x + tr(474) ) u x")
= % K{(s"K"Ks — tr(K'K) — s"4"As + tr(4"4) ) s s)A"

=K(K'K + % Diag[k(K'K);] — A" — % Diag[ii(474);])A"
= K( ®o(K'K) — ®o(474))A”, (S5)

where o is Hadamard product and ® € R"*"

is a symmetric matrix such that ®; =
1+x;/2 for i = j and ®; = 1 for i #j. Thus, OL/OW becomes

57?/ = o(E(u) — Eo) g(w) s A" + BK( PO(K'K) ~ Do(4'A) A" +yKA A4 (S6)

Obviously, K = O is one of fixed points of Eq.(S6).

Case 1. Suppose B = I. When we use E(u) — (E(u)) = [u[/2 — (u[*)/2, Eq.(S6) becomes
L

oL oK( ®o(K'K) - 1A" + BK( ®o(K'K) — ®o(4"4) A" + yKa' 474"

ow
= K{ ®o(K'K) — BDo(4"4) — ol + y(A"A) " 14"



= K{ ®o(K'K) — BDoA —al + yA ' 14", (S7)

Since A is a regular matrix, from 6L/@W = O, using a vector 1 = (1, ..., 1)’ € R, a

necessary and sufficient condition of a fixed point is given by

KK'K = K{(11™-®)o(K"K) + BDOA + af — yA'}. (S8)

[RM <M

We define a diagonal matrix D € such that

D = (11"-®)o(K'K) + pOoA + ol —yA™
= Diag[—«/2 (K'K);i + P(1+K:/2) Asi + o — YAy '] = , (S9)

where diagonal matrices D; € RV and D, € RMN*MN) are subsets of D. Moreover,
K € RYM s represented as K = P(I, Q) without loss of generality, where P € RV is a

M-N)

regular matrix and Q € R"" is any matrix. Thus, Eq.(S8) becomes

D O

1) _ 1
P(LQ)[QT}PP(LQ) P(1, Q) o b I

2

= ([[+00"P'P(, Q)= (D1, OD»). (S10)

Each block becomes (I+QQ") P'P = D, and (I+QQ") P'P O = O D,. By substituting the
former equation into the latter, we obtain D; Q = Q D,. Since this is one of Sylvester
equations, it becomes (D®1 — I®D;)Vec[Q] = O, where ® is the Kronecker product
and Vec[Q] = (Oi1, .., Q1N Q21 -y QN(M,N))T. If (D1®1 — I®Dy) is a regular matrix,
0O = O is a necessary and sufficient condition to satisfy the equation. Hereafter, suppose

QO = O. Then, a necessary and sufficient condition of fixed point is
K= (P, 0), (S11)
where P is a regular matrix that holds

PTP = D1 = Diag[—Ki/2 (PTP)Z',' + B(1+K,/2) Aii +o-— ’YAl','il],
&= ©0(P'P)=pDoA; +al—yA ",
= PP=BA;+DTo(al—yA ). (S12)

Note that ®; € RV is defined such that (®y); = forall 1 <i,j <N and o," e RVY



is defined such that (®,"); = (®,); ' for all 1 <i,j <N. When (a, B, y) = (0, 1, 0), P =
JA"? with any rotation matrix J € R"*" satisfies Eq.(S12). Thus, the EHGR obtain a
subspace that N sources span in an equivalent way to the well-known Oja’s subspace

rule [11] except kurtosis term.

Case 2. Suppose (a, B, v) = (1, 0, 0). Moreover, suppose si, ..., sy independently follow
an identical distribution py(s;), and sy+1, ..., Sy are independent of each other. Under this
condition, K = (I, 0) € R is an equilibrium point of the EHGR-B, where [ is the
NxN identical matrix and O is the Nx(M-N) zero matrix. This is confirmed by
substituting K = (I, O) into Eq.(S6). Using an N-dimensional vector § = (s, ..., sv)’,
E(u) and E, become E(S) = —log po(S) and Ey = (-log po(S)) + 1, respectively. Since
(p(8)g(S)) = {p'(s)) for arbitrary function ¢(s) from Supplementary Methods S1.1, we

have
N ORIy
=(g(8) s’ + (E(8)—(E(8))- 1)U, 04" = 0. (S13)

Therefore, K = (I, O) is a sufficient condition to be a fixed point of the EHGR-f. This
fixed point of the EGHR-J is equivalent to that of the original EGHR [4] while M can
be larger than N in this study.

Case 3. Suppose B and y are small constants, s;, ..., sy independently follow an
identical even distribution po(s;) with zero mean and unit variance, and sy, ..., Sy
independently follow distributions with zero mean and unit variance. Under this
condition, as shown in the following, K = (I, O) + A = (I+A;, A;) € R¥™ is a sufficient
condition to be a fixed point of Eq.(S6), where [ is the NxN identical matrix, O is the
Nx(M=N) zero matrix, A = (A}, A;) € RY™ is a matrix with small absolute value
elements, |4;] << 1, and A, € RY" and A, € RV™™ are subsets of A. Using
N-dimensional vector § = (si, ..., sn)’, g(u) becomes g(u) = g(S§+As) =~ g(§) +
Diag[g/(§)]As. Since ((E(8) - (E(8)) — 1) g(8) s') = O and {9(s)g(8)) = (¢'(s)) for
arbitrary function ¢(s), the first term in the right side of Eq.(S6) becomes

(E(u)y-Ep)g(w)s") = ({E(8 )~E(8))y+g(8) As<g(8) As)-1}(g( 8 )+Diag[g'(§)]As)s")



~((g(8)"As~g(8)As)) g(8) s”) + ((E(3)«E(8))-1) Diag[g'(8)]As s”)

= ((Diag[g(8)]As+(I,0)Ag(8)) s7) +(g(§) As~(g(8) As))(1,0)
+{(E(8)~E(8))-1) Diag[g'(8)]As s7)

=((L,O)Ag(8) s") + ((E(8 )<E(8))) Diag[g'(8)]As s”)

= (I,0)A'(1,0) + QoA

= (A"+Q0A;, QH0A)). (S14)

Note that from Supplementary Methods S1.3, Q = (Q, Q,) € R¥™ is defined such that
Q;; = cov(-log po(si), g'(s))si”) for i = j and Q; = cov(—log po(s), g'(s;)) + cov(-log po(s)),
57X (s)YO[/<N] for i # j (®[j<N] is 1 for j < N and 0 otherwise). Note that Q; € R¥*"
and Q, € RV are subsets of Q. We define H = (H,, Hy; Hs, Hy) = AT4 € RMM
Since A, B, and y are small, the second and third terms in the right side of Eq.(S6) is
approximated as B(L,O)( Do((1,0)'(1,0)) — ®do(d’4) A" + vyI,0)A"4)'4A" =
(I,O)(BDOo(I-H) + yH ")A”. Therefore, Eq.(S6) becomes

57]; = (A+Qi0A), Q0A9)A" — (LO)PDO(H-I) - yH A"

= [(A,"+Q oA}, ©,0A;)

o(H -D—-vy(H H —-y(H™
o) o (H, = D)=y (H™), BH,-y(H™), Vi

BH,-y(H™), po,o(H,-)-y(H™),
= [(A+Q10A, Q0A9) — (BD10(Hy — 1) = y(H )1, BHy —y(H )] A", (S15)
To be an equilibrium point, A needs to satisfy
A+Q0A = BDio(Hy — ) —y(H"), and Q,0A; =BH, —y(H '), (S16)

Since the right side of the first equation is a symmetric matrix, if and only if A; is a
symmetric matrix, a solution exists. Suppose A; is a symmetric matrix. Therefore, using

avector 1=(1, ..., )" € R", we obtain

Ay = (1174+Qy) o {Bdo(H, — 1) —y(H )1},
A= Q1o (BH, — y(H ")} (S17)

Therefore, K = (I+A;, A,) is a sufficient condition of a fixed point. Since |A;| << 1, this
fixed point is sufficiently close to § = (s, ..., sy)’, thus, the EGHR-B can perform
PCA and ICA simultaneously. Specifically, if B = I, A becomes a diagonal matrix and

10



its (i, i) element is A; = (1+Q;) " {P @i (Aii—1) —y Ay '}; thus, an exact solution of PCA
and ICA exists.

To see how the shape of the source distribution affects on the fixed point, suppose
po(sy) (1 <i<N) follow po(s;) = exp(-b|si|*)/Z, where a > 0 is a positive constant, b > 0 is
tuned in a manner to hold (si2> = 1, and Z is a partition function such that Z =
fexp(—b|sl~|a)dsi. Note that sy+q, ..., sy follow distributions with zero mean and unit
variance. Since —log po(s;) = b|si* + const., g(s;) = —dlogpo(s;)/ds; = bals|* 'sgn(s;), and
2'(s;) = —dg(s)/ds; = ba(a—1)|s{** + bals]*"5(s;), we have —log po(s;) = g(s)si/a + const.,
g'(sp)si = (a—1)g(s;) and —log po(s)) g'(s;) = (a—1)/a g(s,-)2 + const. g'(s;). Thus, Q;

becomes

Fori=j,
Qi = cov(-log po(si), g'(s)s") = {(—log po(si)+{log po(s))) g'(s))si’)
={(g(si)sila — (g(si)sia)) (a—1)g(si)s)
= (a-1)/a {(g'(s))sitg(s) s + (a=1)/a (g(si)si — (g(s)si)
= (a-1)/a{(a-1)g(s))si + gls)sp = a1,
Fori#j<N,
Q= cov(-log po(si), g(s;)) + cov(-log po(s)), s, K& (s))
= ((-log po(si)+log po(s))) g'(s,)) + {(-log po(s;)y+(log po(s))) s, (g'(s:))
= ((a-1)/a g(s))* —(g(s)silay g'(s)) + {(g(s))si'a — (g(spsi/a)) 5,7 (g(s)
= (a-2)a{g'(s:))) + 2/a (g'(s)) = (g'(s)),
For N+1 <j <M,
Q;; = cov(-log po(s), g'(s) = (a-2)/a (g'(s:))- (S18)

11



S3. Linear stability of the EGHR-p
The second derivative of L is given by

&L= 22% dKy

= a((g(w) du —(g(u)" du)) g(u)" du + (E(u) - E) du” Diag[g'(u)] du )
+B{ (u” du—(u" du))u” du+ (E,—E) du’ du)+yte(dW dw)
= o {(s"dK g(u) — (s"dK"g(u))) s"dK g(u) + (E(u) — Eo) s dK Diag[g'(u)] dK s)
+ B ((s"dK"Ks — (s"dK"Ks)) s'"dK"Ks + (E,~E) s'dK"dKs) + y tr(4 "dK"dKA™)
= a tr[ {(s"dK"g(u) — (s"dK g(w)))g(w)s" + (E(u) - Eo) Diag[g'(w)] dK ss")dK ]
+Btr[ {(s" dK" K s —{(s" dK" K s))ss"YdK'K + ((E, — E,)ss"YdK'dK ]
+ytr[4 4 TdK" dK]. (S19)

From Supplementary Methods S1.2, ( (s" dK” K's —(s" dK" K s))ss’ ) = dK'K + K'dK +
Diag[k{(dK'K);]] = ®o(dK'K + K'dK) (where ®;; = 1+k;/2 for i = j and ®; = 1 for i # ).
Moreover, by Eq.(S5), ((E. — E\) ss'y = K'K + Diag[k(K'K);}2 — A"A —
Diag[k(474);]/2 = ®o(K'K — A"4). Thus, the second term of Eq.(S19) becomes

tr[ ((s” dK" K s — (s" dK” K s))ss")dK'K + {(E,, — Ey)ss’ )dK"dK ]
=tr[ {Do(dK'K + K'dK)} dK'K + {®o(K'K — A"4)} dK'dK . (S20)

Therefore, d°L becomes

&L = o tr] {(s"dK " g(u) — (s"dK g(n)))g(u)s” + (E(u)-E,) Diag[g'(u)] dK ss"YdK" ]
+ B tr[{@o(dK'K+K"dK)} dK'K] + tr[ {Oo(K'K-A"4) +yA ' A"} dK'dK]. (S21)

Case 1. Suppose B = I. When we use E(u) — (E(n)) = [u*/2 — (u/2, K = (P, O) gives
an equilibrium point of the cost function wherever P satisfies Eq.(S12). The first term of

Eq.(S21) becomes

trl((s"dK g(u) — (s"dK g(u)))g(w)s” + (E(u)—Eo) Diag[g'(w)] dK ss")dK']
= tr[{(s"dK"u — (s"dK"u))us” + (w"u/2 — tr(K'K)/2 — 1) dK ss’)dK"]
=tr[K((s" dK'K s — tr(dK"K))ss"YdK" + dK{(s"K"Ks/2 — tr(K'K)/2 — 1)ss"YdK"]
= tr[K(dK'K + K'dK + Diag[«{(dK'K);])dK" + dK(K'K + Diag[k{K'K);i]/2 — DdK]
= tr] ®o(dK'K + K'dK) dK'K + (®o(K'K) — 1) dK'dK ]. (S22)

12



Thus, by supposing K = (P, O) and dK = (dK, dK>), d°L becomes

&L = tr[(®o(dK'K))dK'K] + tr[(Do(K'dK))dK'K]
+ tr[(Do(K'K — BA™A) — al + yA ' A dK dK]
= tr[(®,0(dK,"P))dK,"P] + tr[(®,o(P dK)),P dK>) (P dK,PTdK>)"]
® o(P'P-BA)—ol+YA 0]
+uf] ! ( Av) i dK'dK]
0 —pd, oA, —al+ A}
= tr[(®10(dK,"P + P'dK))dK,"P] + tr[(®,0(P"P-BA1) — ol + YAy dK, dK ]
+ tr[PTdK,dK,>"P] + tr[(—-PD20 A, — ol + YAy dK, dKs). (S23)

Since ®,0(P'P) = pO0A; + af — YA (see Eq.(S12)) and @,0(dK,'P + P'dK)) =
dK\"P + P'dK, + Diag[«(dK,"P);], d’L becomes

N
&L =tr{(dK,"P + PTdK)dK\"P1 + Y. «(dK\"P);?
i=1
+ tr[PTdK>dK," P] + tr[(—BD20 A, — af + yA; NdK, dK>]
N
= tuf(@x," + dx)dx 1+ Y, wldxi )

i=1

+ tr[dXodXo "] + tr[(—BD20A; — al + YAy X (PP T)dXs]

1 & N
= 02 Y (@XrdX) 23, Ou(dX)
i=1 j#i<N i=1
+ tr[dXodXo "] — tt[(PTP) ' dXa(PD20 Az — ol + YAy H)dXa]. (S24)

Note that dX = (dXy, dX>) = P'dK = P'(dK, dK>) is supposed. Because coefficients of
dX, are positive, the linear stability depends on the sign of coefficients of dX;. Since
P'p = BA, + (D]TO(UJ — yAfl) and (B®,0A; — ol + yA{l) are diagonal matrices, we

have
tr[dXadXs"] — tr[(PTP) ' dXa(BD20As — al + YAy )dX:']

=YY At Y Y (PPN dX? (BOoA — ol +yAs Y

i=l j=N+ i=1 j=N+1
N M )

= Y ) (@Y i dXy { BAHD To(alyA; )i — (BO:0Ar-altyA; ;)
i=l j=N+1

13



>

=l j

((PTPY V)i dXi { BAi+ @i (a—yAi") — (BOsA; — a0+ yA; ) }

J

LM LM

((P'PY Vi dXi” { B(Ai—DyAy) + oD 1) —y(Dii ' A=Ay )} (S25)

1

Therefore, a necessary and sufficient condition for linear stability is
B(Ai—D;A;) + oDy 1) —y(@; 'Ai '-A; ) >0 for 1SN, N+1<<M. (S26)

When (a, B, v) = (0, 1, 0) and sy41, ..., sy follow a unit Gaussian distribution, the
condition for linear stability is A; > Aj; for 1 <i < N and N+1 <j < M. Thus, when u
represents a space that the first to Nth components span, the state is stable, while when
u involves other components, the state is unstable. Accordingly, the EGHR-B can
extract principal components. However, when syii, ..., sy follow non-Gaussian

distributions, the linear stability condition depends on kurtosis of the distributions.

Case 2. Suppose (a, B, v) = (1, 0, 0), s1, ..., sy independently follow an even identical
distribution po(s;) with zero mean and unit variance, and sy+j, ..., sy independently
follow distributions with zero mean and unit variance. Under this condition, K = (Z, O)

is an equilibrium point. When K = (I, O), d°L becomes

d’L = t[{(s"dK"g(3)<s"dK g(3))g(3)s" + (E(5)~<E(3))-1) Diag[g'(3)] dK ss")dK']
= tr[(((1,0)dK'g(§ )+Diag[g'(§)]dKs)s’ + (E(§))<E(§))-1) Diag[g'(§)] dK ss’)dK"]
= tr[ (1,0)dK"(1,0)dK" + ((E(§)~<E(5))) Diag[g'(§)] dK ss’)dK" ]
= tr[ dK\dK, + (QodK) dK ]

:i( 1+Ql’l’)dKii2 +2 2 (dKlde('ﬂ + QUdKUZ) +i i Qy dKljz

i=1 i=1 i#j<N i=1 j=N+

N 1 N N M
=D (HQdK +5 Y, D, (QdK+2dKdKirtQudKi?) + Y, . Q, dKi'. (S27)

i=1 i=l i#j<N i=] j=N+l

Therefore, necessary and sufficient conditions to be linearly stable are given by

1+Ql‘,‘>0 fOflSi:jSN,
Qiij,'>1 fOI'lSl#]SN,
Q;>0 for | <i< N, N+1<j<M. (S28)

To see how the shape of the source distribution affects on the linear stability, again
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suppose po(s;) (1 <i < N) to follow po(s;) = exp(-bls{“)/Z and solve Q; as shown in
Eq.(S18). Then, whenevera > 1,1 +Q;;=a> 0 and Q; Q;; = (g'(s))* > 1 hold. Whereas,
Q;; = (a-2)/a {g'(s;)) > 0 holds only when a > 2. Therefore, a > 2 is a necessary and
sufficient condition to be linearly stable. Accordingly, when s;, ..., sy follow a
sub-Gaussian distribution (@ > 2) and syyy, ..., sy follow Gaussian or super-Gaussian
distributions, s, ..., sy are chosen as outputs. Whereas, when s, ..., sy follow a
super-Gaussian distribution (a < 2) and sy:1, ..., sy follow Gaussian or sub-Gaussian
distributions, some of sy, ..., sy may not be chosen while some of sy:1, ..., sy may be

chosen as outputs.

Case 3. Suppose that mixing matrix 4 € RY* consists of 4 = R A"*, where R € RV
is a rotation matrix and A € R"*" is a diagonal matrix. Then, H becomes H = A"A4 ~ A.
Moreover, suppose |B|, [y| << 1 and a = 1 — B = 1. From the fixed point analysis, when B
= ], a fixed point is represented as u = (I+A;, O) s, where A; € R¥™ is a diagonal
matrix defined by A; = (11T+91)To {BDo(A; - 1) - yAl_l}, while A, = O. The first term
of Eq.(S21) becomes

((s" dK” g(u) — (s" dK" g(w)))g(w)s” + (E(u)-Eo) Diag[g'(w)] dK ss");
= (ks glur) dKia 51— i g(ur) dKya s1)) g(ui) 57+ (E(u)—Eo) g'(wi) Y1 dKis s1))
=Ykt g(ur) dKia 51— Skt (i) dKia 51)) (i) 5+ (E(u)—Eo) g'(u;) dKyy 7). (S29)

To further calculate Eq.(S29), again suppose po(s;)) (1 < i < N) follow po(s;) =
exp(=blsi{*)/Z. Thus, g(u;) becomes g(u;) = (1+Ax)"* 'g(s) = (1+(a—1)Ai)g(s;) = Di; g(s)),

where D is diagonal matrix with D;; = 1 + (a—1)A;.. Using this, we have

(X (g(ur) dKp s1) g(ui) ) = Dii (s (D g(sk) dKia 51) &(51) )
= Dii ({X (Dii g'(si) dKi s1) + Xk (D g(s1) dKii)} 57+ 8 Yt (D &(s1) dKia 51))
= D;i { D (g'(s1)s;’) dKyj + Dy dK; O[}<N] + 85 ¥ Dy dKis }
= D, {g'(s))s,”) dK;; + D;; D dK;; O[j<N] + D;; 8; tr(DdK)). (S30)

Moreover, by defining e(u;) = —log po(u;) + (log po(u;)), we have

(E(u)-Eo) g'(u)) dKyy 57y = {(e(u;) + (1-3;)e(u)O[<N] - 1) g'(uy) sy dK;
= ({(1+ahie(s;) + (1-8;)(1+ady)e(s)O<N] - 1} (1+(a-2)Ang(s:) s7°) dKy
= ({(DirtAi)e(s;) + (1-8)(DirtAi-alirtad)e(s)O<N] — 1 H(Di-Ai)g (s:)s/”) dKy
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= {(DirtAi)(Dii—Ai) Qi + (Di—Ai){{(1-8;)a(Aj~Ai)e(s))O<N] — 1} g '(si)sf)} dK;;
= D Qi+ ({(1-8)a(Aj—An)e(s)O<N] — (Di-Ai)} g'(s:)s/ )} dK;

= {Di’ Q; + a(A—0i)g (s))e(s)s YO<N] — (Di—Ai)Xg (s:)s)} dK;

= {D;i’ Qi+ 2(A-AiXg (s))O[I<N] — (Di—AiXg (s:)s/ )} dKy. (S31)

In the last line, {e(s))s;”y = ((g(s;)s; — {g(s,)s,))s;"Ya = 2/a is used. Thus, by defining dX =
DdK, the first term of Eq.(S21) becomes

o trf((s” dK” g(u) —(s” dK” g(w)))g(w)s” + (E(u)Eo) Diaglg'(w)] dK ss"dK"]

= aii[l)iiz <g’(Sj)Sj2> dKlj + Dii D]j d]{jl @[]SN]
+ {l)ii2 Q,] + 2(AJJ_Aii)<g,(Si)>®[f§N] . (Dit_Aii)<g,(Si)Sj2>} dKz]] dKl]

=o Y D {(Di'-DitAi)g(s)s’y + Dii QutdKif

1 j=1

N
+ 2{ 2(A~AiXg (s0))dK + Dy dK;; Dy dK;i} |

Al

\'Mz

—_

ii{aA”(g (s9)57 )0y} dX; +22{2(A,, —AiXg (s))dX; +odXdX;} . (S32)

=1 j=l1 i=l j=1
In the last hne, Dii_2(Dii _Dii+Aii) ~1- Dl','_l + Aii ~1- (1—(61—1)Al',') + Al',‘ = ClAl‘i 1s used.
In addition, the second and third terms of Eq.(21) become

B{tr[(Do(dK'(1,0))dK (1,0)] + tr[(Do((1,0) dK))dK (1,0)]}
+ tr[(BO((1,0)'(1,0) — A) + yA )dK dK]

= B{tr[(®,0dK,dK,"] + tr[(®0dK,dK>)(dK1,dK2) "]}
+t[(BD0(I-Ay) + YA, K, 'dK L] + tr[(BD20(=Az) + yAs NdK, dKs]

= B{tr[dK\(®,0dK))] + tr[dK (@ 0dK\") + dK,dK,>"]}
+ t[(BO0(-Ay) + YA, VK, 'dK L] + tr[(BD20(=Az) + yAs DK, dKs]

= Btr[dK (D, 0(dK +dK,\ )] + tr[(BD 1 o(I=A1) + YA, dK, dK, ]
+ tr[(BU=D20A2) + YA, )dKy dKo]

N N N N
=B Y, DydKyrdKdKy+ Y, Y (By(1-AyyryA; NdKy'

i=l j=1 i=l j=1
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+ D 2 (BU-DuAyyHyA; HdK (S33)

i=l j=N+l
Since A; = (117+Q)) o {Bd o(A| — I) — yA, '} = Diag[(1+Q:) " (B ©ii (Ai—1) — YA )]
= Diag[(B ®ii (Ai—1) —yAi ") / a], Eq.(S33) becomes

N N N N N M
BY. D@, (dKi+dKpdKy— D> ah  dK7+Y > (BU-0uA)+yA; YKy

i=1 j=1 i=1 j=1 i=1 j=N+1

N N N M
=Y YA (BD;— aly) dXy” + By dXi dXyy + . D (BU-PyA)+yA; )dXy.  (S34)

i=1 j=1 i=1 j=N+

Therefore, Eq.(S21) becomes

N M N N
dL= Y Y {ahig(s)s’) + o QutdX + DY {2(0-AiXg (s))dXy + adXydX;)
=l j=1 =1 j=1

N N N M
3 (B — ady) dXy + BO; Xy dXy} + D, Y, {B(1-0A)+yA; LK

i=1 j=1 i=l j=N+1

N N N

N
=) Y L ahig (s)s eyt 2(A-An)(g (s))HBDy—al;} dXy + Y ' (ot BD;)dX;dX;
=1 j=1 i=1 j=1

+ 2D {ahilg (s)s?) + aQtdXy + Y, D AB-QuA YA, X

i=l j=N+1 i=1 j=N+1
i
i=

1

{a(AiKg (515" )~Ay)yHaQut 2(A-AiXg (s))+BPy} dX; + ii( o+BOy)dX;dX;:

=1 j=1

M=

=

* Z i {(Bq)ii(Ai,—l)_yAilfl_i_a a-=2

i=l j=N+1

Therefore, necessary and sufficient conditions to be linearly stable are given by

- Kg'(si)) + BA-QyA YA, ' HdX . (S35)

For1 <i=j<N,
a(A,-i(a—l)—A,-i) + a(a—l) + o+ ZB(Dﬁ = aAi,-(a—Z) +oa+ 2B(Dii >0

For1 <i#j<N,
{a(Aig (s))-Ay) + (g (s:)) + 2(A;~Ai)g (s)) + B}
{a(AKg (s))-Ai) + oLg(s)) + 2(Ai=Ay)Xg (s)) + B} > o+
= o (gs)) (g5 (g (5)) {a(AKg (5))-Ai) + 2(Ai~Ay)Xg () + B}
+(g'(s)) {a(Aig (s))Ay) + 2(A;-Ai)g(s)) + B} > 1
= (1-2B)g(s)) + ag (s (s))-D)(AirtAy) + 2B(g(s)) > 1
= (gD (s-1) — 2B (s (g (s))—1) + alg (s))((g (s))-1)(AitAy) > 0
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= (&)~ D{g (s +1-2P(g(s:)) + alg (s))(AirtAy)} > 0,

For | <i<N,N+l1<j<M,

a—2
a

(B A1) —yAi '+ Kg'(s)) + B(1 — DAy +yA; ' > 0. (S36)

The first and second inequalities are satisfied when po(s;) = exp(-bls{|“)/Z. Thus, the
linear stability depends on the third inequality.

S4. Conventional PCA algorithm
Oja’s subspace rule [11] is defined by

W oc (ux" —u’'m))
=K(ss"yA"— K (ss") K'W. (S37)

When (ss’) = I, it becomes
Wo K(ATA—K K) 4™ (S38)

This is equivalent to the EGHR-B with (a, B, v) = (0, 1, 0) except positive definite

matrix 447 and kurtosis terms.
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