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Multi-context blind source separation 
by error-gated Hebbian rule
takuya Isomura  1 & taro toyoizumi  1,2

Animals need to adjust their inferences according to the context they are in. this is required for the 
multi-context blind source separation (BSS) task, where an agent needs to infer hidden sources 
from their context-dependent mixtures. the agent is expected to invert this mixing process for all 
contexts. Here, we show that a neural network that implements the error-gated Hebbian rule (eGHR) 
with sufficiently redundant sensory inputs can successfully learn this task. After training, the network 
can perform the multi-context BSS without further updating synapses, by retaining memories of all 
experienced contexts. this demonstrates an attractive use of the eGHR for dimensionality reduction by 
extracting low-dimensional sources across contexts. Finally, if there is a common feature shared across 
contexts, the EGHR can extract it and generalize the task to even inexperienced contexts. The results 
highlight the utility of the eGHR as a model for perceptual adaptation in animals.

Inference of the causes of a sensory input is one of the most essential abilities of animals1–3 — a famous exam-
ple is the cocktail party effect, i.e., the ability of a partygoer to distinguish a particular speaker’s voice against a 
background of crowd noise4,5. This ability has been modelled by blind source separation (BSS) algorithms6,7, by 
considering that several hidden sources (speakers) independently generate signal trains (voices), while an agent 
receives mixtures of signals as sensory inputs. A neural network, possibly inside the brain, can invert this mixing 
process and separate these sensory inputs into hidden sources using a BSS algorithm. Independent component 
analysis (ICA), achieves BSS by minimizing the dependency between output units8,9. Numerous ICA algorithms 
have been proposed for both rate-coding10–13 and spiking neural networks14.

Previously, we developed a biologically plausible ICA algorithm, referred to as the error-gated Hebbian rule 
(EGHR)15. This learning rule can robustly estimate the hidden sources that generate sensory data without super-
vised signals. Importantly, it can reliably perform ICA in undercomplete conditions16, where the number of inputs 
is greater than that of outputs. A simple extension of the EGHR can separate sources while removing noise within 
a single-layer neural network17, by simultaneously performing principal component analysis (PCA)18,19 and ICA. 
The EGHR is expressed as a product of pre- and post-synaptic neuronal activities and a third modulatory factor, 
each of which can be computed locally (i.e., local learning rule16). In this sense, the EGHR is more biologically 
plausible than non-local engineering ICA algorithms10–12. Because of these desirable properties, the EGHR is 
considered as a candidate mechanism for neurobiological BSS20–22, as well as a next-generation neuromorphic 
implementation23,24 for energy efficient BSS.

The optimal inference and behavior often depend on context. Indeed, our perception and deci-
sions reflect this context dependency, i.e., cognitive flexibility25. Studies in primates have suggested that a 
contextual-cue-dependent dynamic process in the prefrontal cortex controls this behavior26–28, and several com-
putational studies have modeled it29–32. Likewise, context dependence of auditory perceptual inference has been 
modeled33. In addition to experimental evidence, recent progress in machine learning has also addressed this 
multi-context problem, in an attempt to create artificial general intelligence34–36. By implementing (task-specific) 
synaptic consolidation, a neural network can learn a new environment, while retaining past memories, by pro-
tecting synaptic strengths that are important to memorizing past environments. Those findings indicate the 
importance of multi-context processes for cognitive flexibility.

Unlike the above-mentioned tasks, BSS in several different contexts has some difficulty. Conventional ICA 
algorithms assume the same number of input and output neurons10–12,37,38 and cannot straightforwardly perform 
a multi-context BSS. After learning, the synaptic strength matrix of these algorithms converges to the inverse of 
the mixing matrix of the current context (or its permutation or sign-flip), which is generally different from that in 
the previous context. Hence, when the network subsequently encounters a previously learnt context, it needs to 
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relearn the synaptic strengths from the very beginning. More involved engineering ICA algorithms, such as the 
non-holonomic ICA algorithm39 and the ICA mixture algorithm40,41, are expected to perform the multi-context 
BSS. However, a biological implementation of these non-local learning rules is unclear. Further, as we show below, 
they cannot learn to compress redundant inputs by extracting the underlying low-dimensional hidden sources.

Here we show that the EGHR can perform multi-context BSS when a neural network receives redundant 
sensory inputs. It can retain memories of previously experienced contexts and process the BSS right after con-
textual switching to a previously learnt context. This suggests that the EGHR can also be used as a powerful data 
compression method42, since it extracts low-dimensional hidden sources across contexts, despite the proportional 
increase in data dimensions to the number of contexts. Moreover, when a common feature is shared across con-
texts, the EGHR can extract it to perform BSS, while filtering out features that vary among contexts. Once the 
learning is achieved, the network can perform BSS even in an inexperienced context, indicating some generali-
zation capability or transfer learning. We demonstrate that the EGHR with sufficiently redundant sensory inputs 
learns to distinguish birdsongs from their superpositions and retains this ability even after learning different sets 
of birdsongs. The rule finds a general representation that is capable of separating an unheard set of birdsongs. 
Finally, possible neurobiological implementations of the EGHR are discussed.

Results
error-gated Hebbian rule (eGHR). In a BSS task, several hidden sources (s) independently generate signal 
traces, while our agent receives their mixtures as sensory inputs (x). In this study, we considered a multi-context 
BSS task, in which a set of contexts with different mixing weights was used. Sensory inputs were randomly gener-
ated from one of these contexts for a period of time, with k (=1, …, C) being an index of context. Our experimen-
tal setup consisted of an Ns-dimensional vector of hidden sources ≡ …s s s( , , )N

T
1 s

 whose elements si 
independently follow a non-Gaussian distribution p(si), an Nx-dimensional vector of sensory inputs 

≡ …x x x( , , )N
T

1 x
, and an Nu-dimensional vector of neural outputs ≡ …u u u( , , )N

T
1 u

 (Fig. 1). The sensory 
inputs in the k-th condition were generated by transforming the hidden sources, i.e., the so-called generative 
process:

x A sSensory inputs (1)k( )= .

Here A(k) is the Nx × Ns mixing matrix for the k-th context that defines the magnitude of inputs, when each 
source generates a signal. To ensure that each A(k) represents a different context and that each context has an ICA 
solution, column vectors of a block matrix (A(1), A(2), …, A(C)) are supposed to be linearly independent of each 
other. We designed the task such that these contexts appear sequentially or randomly. The neural outputs were 
expressed as sums of inputs weighted by an Nu × Nx synaptic strength matrix W, and calculated by:

= .u WxNeural outputs (2)

It is well known that when a presynaptic neuron (xj) and a postsynaptic neuron (ui) fire together, Hebbian 
plasticity occurs, and the synaptic connection from xj to ui, denoted by Wij, is strengthened43,44. Because this 
constitutes associative learning, correlations between …x x, , N1 x

 and ui are usually enhanced; thereby, correla-
tions among neural outputs also increase. This process is distinct from separation of signals (i.e., BSS) for which 
each neural output is expected to encode a specific source. To separate signals, we introduced a global scalar 
factor (i.e., a third factor) given by the sum of nonlinearly-transformed output units15:

Figure 1. Model setup for multi-context BSS task. In this model, …s s, , N1 s
 are hidden sources (e.g., birdsongs); 

…x x, , N1 x
 are sensory inputs that an agent receives; …u u, , N1 u

 are neural outputs; … …A A A A, , , , ,k
N
k k

N N
k

11
( )

1
( )

21
( ) ( )

s x s
 

are elements of the k-th-context mixing matrix; … …W W W W, , , , ,N N N11 1 21x u x
 are synaptic strengths; and E is a 

scalar global factor that mediates synaptic plasticity. Synaptic strengths are adjusted to perform multi-context BSS 
by the EGHR.
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Here p0(u) is the prior distribution that the agent expects the hidden sources to follow; e.g., when p0(u) is a 
Laplace distribution of mean zero and unit variance, then = + … + +( )E u u u( ) 2 constN1 u

. We supposed 
that this global factor modulates Hebbian plasticity. Recent experimental studies have reported that synaptic 
plasticity can be modulated by various neuromodulators45–49, GABAergic inputs50,51, or glial factors52. Possible 
neurobiological implementations of the global factor are further discussed in the Discussion section. Overall, the 
synaptic strength matrix W is updated by the EGHR in the following way:

˙ ⟨ ⟩∝ −W E E u g u xSynaptic plasticity EGHR( ) ( ( )) ( ) ,
(4)

T
0

global factor post pre
��� ������ ������

where W  with respect to time, 〈·〉 is the expectation over the input distribution, and g(u) ≡ dE(u)/du is a 
non-linear function usually associated with a nonlinear activation function. A constant E0 scales the neural out-
puts; the output scale becomes equivalent to the source scale when ⟨ ⟩E p slog ( ) 10 0= − + . In short, the EGHR 
constitutes a Hebbian learning rule when the global factor is smaller than the threshold (E(u) < E0); otherwise 
(E(u) > E0), it becomes an anti-Hebbian rule. This mechanism makes output neurons independent from each 
other. The detailed derivation and theoretical proofs of the EGHR have been described in our previous reports15,17. 
Briefly, the EGHR is derived as the gradient descent of the cost function L ≡ 〈(E(u) − E0)2〉/2. This is the cost for 
having dependency among outputs, designed for measuring the nonlinear correlation among elements of u. 
Hence, the minimization of L makes the elements of u independent of each other. The formal relationship 
between the EGHR and ICA algorithm based on the infomax principle is described in17.

Memory capacity of the eGHR. First, we analytically show the memory capacity of a neural network 
established by the EGHR. As the number of contexts increases, larger dimensions of inputs are needed to retain 
information pertaining to past contexts in the neural network. For simplicity, we supposed that Nu = Ns. Because 
the network represents a linear inverse model of the generative processes, the goal of the multi-context BSS is 
generally given by:

… = Ω … ΩW A A( , , ) ( , , ), (5)C C(1) ( ) (1) ( )

where Ω(k) is an Nu × Ns matrix equivalent to the identity matrix, up to permutations and sign-flips. This is because 
the success of BSS is defined by one-by-one mapping from sources to outputs. Thus, the multi-context BSS is suc-
cessful if and only if a set of mixing matrices (A(1), …, A(C)) expresses a full-column-rank matrix (see Methods for 
the derivation). Hence, we found that the following conditions are necessary to achieve the multi-context BSS for 
a generic (A(1), …, A(C)): (1) the input dimension needs to be equal to or larger than the number of contexts times 
the number of sources, Nx ≥ CNs; and (2) the output dimension needs to be equal to or larger than the source 
dimension, Nu ≥ Ns. Note that the neural network learns the information representation that compresses the 
sensory inputs, because we considered the input dimensions that are much greater than the output dimensions.

The memory capacity of the EGHR was empirically confirmed by numerical simulations (Fig. 2). Here, we 
supposed that two contexts generated inputs alternately. In each context, six-dimensional inputs were generated 
from two-dimensional sources with different mixing weights, as denoted by A(1) and A(2) (see top and middle rows 
in Fig. 2A). A neural network consisting of six input and two output neurons received the inputs and changed 
its synaptic strengths through the EGHR (i.e., training). After training, each neural output came to selectively 
respond to (i.e., encode) one of the two sources (bottom row in Fig. 2A). Thus, the network achieved separation 
of the sensory inputs into their sources without being taught the mixing weights (i.e., BSS).

Crucially, the neural network was able to retain the information learnt for all past contexts if provided with 
sufficiently redundant sensory inputs. This property is illustrated by the trajectories of the BSS error and EGHR 
cost function in Fig. 2B. We defined the BSS error for context k as the ratio of first to second maximum absolute 
values averaged for every row and column of matrix K(k) ≡ WA(k) (see Methods for the mathematical definition 
of the BSS error). Here K(k) expresses the mapping from sources to outputs, which is equivalent to the covariance 
matrix between hidden sources and neural outputs K(k) = Cov(u, s). This definition of the BSS error was made to 
ensure that the value was zero if and only if one source mapped onto one output, and vice versa; otherwise the 
value was positive and less than one. Moreover, the cost function of the EGHR was defined as the expectation of 
the square of the global factor: L = 〈(E0 − E(u))2〉/2. Context 1 (red in Fig. 2A) was provided in the first session. 
Since synaptic strengths started from a random initial state, the BSS error at the beginning of the first session 
was large; then, the network learned an optimal set of synaptic strengths, and the error became zero, which was 
achieved by minimizing the cost function through gradient descent updates. When context 2 (blue in Fig. 2A) 
was provided for the first time in the second session, the EGHR cost function transiently increased, as it needed to 
learn the new mixing matrix. An important point was revealed at the first step of the third session, in which con-
text 1 was provided again. The BSS error was significantly smaller than that in the first session and close to zero 
from the beginning of this session, indicating that the network retained synaptic strengths that were optimized 
for context 1 even after learning context 2. After several iterations, the BSS error for both contexts converged to 
zero. The success of learning was also confirmed by the trajectory of the EGHR cost function that also converged 
to the minimum value (Fig. 2B bottom).
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These results show that an undercomplete EGHR increased the speed of re-adaptation to previously experi-
enced contexts, suggesting that memory of past experiences was preserved within the network. Moreover, the 
network learned the optimal set of synaptic strengths that entertained both contexts after several iterations. A 
key feature for this ability is the “null space” in the synaptic strength matrix. While only four (2 × 2) dimensions 
were required to express a mapping from two-dimensional sources to two-dimensional outputs in one context, 
the synaptic strength matrix still comprised eight (2 × 6 − 2 × 2)-dimensional degrees of freedom. This freedom 

Figure 2. Results of multi-context BSS. (A) Distributions of sources, inputs, and outputs for context 1 and 2. 
(B) Trajectories of BSS error in the two contexts (top, red: context 1, blue: context 2) and cost function (bottom). 
(C) Visualization of null spaces. The panel illustrates the shapes of the cost function under each context (left 
and right) and the trajectory of synaptic strengths (W) projected in a subspace spanned by the first (PC1) 
and second (PC2) principal components (center). The trajectory is determined by the gradient of either cost 
function, depending on the context. On the PC1-PC2 plane, null spaces are illustrated as nullclines; red and 
blue curves are nullclines for contexts 1 and 2, respectively. Low cost areas (i.e., valleys of the cost functions) are 
highlighted by red or blue shading. The synaptic strength matrix starts from a random initial state (star mark), 
shifts to the nullcline of context 1 or 2, and eventually converges to the cross point of the two nullclines, where 
the synaptic strengths perform the BSS for both contexts. Each source was randomly generated by the unit 
Laplace distribution. A learning rate of η = 4 × 10−6 was used. The MATLAB source code for this simulation is 
appended as Supplementary Source Codes.
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spanned a null space in which synaptic strengths were equally optimized with zero BSS error. Similarly, when two 
different contexts were considered, four-dimensional degrees of freedom remained, as an overlap between the 
two eight-dimensional null spaces. To visualize such a null space, we projected synaptic strengths onto a subspace 
spanned by the first (PC1) and second (PC2) principal components of the trajectory of synaptic strengths (Fig. 2C). 
On this PC1-PC2 plane, a null space was illustrated as a nullcline. Since the dynamics of synaptic strengths were 
determined to go down the slope of a cost function for either context 1 or 2, synaptic strengths were started from a 
random initial state and reached the nullcline of either context 1 or 2, in turn. Crucially, this trajectory converged 
to the cross point of the two nullclines, where the synaptic strengths entertained both contexts. Because of this, the 
BSS error reached zero after iterative training; i.e., the network solved ICA for both contexts.

Furthermore, we examined the multi-context BSS by the EGHR using a large number of contexts (Fig. 3). Our 
agent received redundant (2000-dimensional) sensory inputs, comprising 100 sets (contexts) of mixtures of ten 
hidden sources (1000 sources in total), that were generated as products of the context-dependent mixing matrix 
and sources. Ten outputs neurons learned to infer each source from their mixtures by updating synaptic strengths 
through the EGHR. After training, we found that they successfully represented the ten sources for every context, 
without further updating synaptic strengths, as illustrated by the reduction of the BSS error for all 100 contexts 
(Fig. 3A) and the convergence of the covariance between sources and outputs to a diagonal matrix (up to permu-
tations and sign-flips) (Fig. 3B). This was because synaptic strengths had sufficient capacity and were formed to 
express the inverse of the concatenated mixing matrices from all contexts, which was further confirmed by the 
convergence of the synaptic strength matrix in the null space (Fig. 3C).

Bss in constantly time-varying environments. In the previous section, we described a general condi-
tion for the neural network to achieve the multi-context BSS. In special cases, where the mixing matrices in each 
context have common features, the neural network can perform the multi-context BSS beyond the maximum 
number of contexts described above. Here, we show that when contexts are generated from a low-dimensional 
subspace of mixing matrices and, therefore, are dependent on each other, the EGHR can find the common fea-
tures and use them to perform the multi-context BSS.

As a corollary of the property of the EGHR when provided with redundant inputs, the EGHR can perform the 
BSS even when the mixing matrix changes constantly as a function of time (Fig. 4A). Without loss of generality, a 
time-dependent mixing matrix is expressed by the sum of time-invariant and time-variant components, as follows:

≡ +� � ��� ����
‐ ‐

A t A A R t( ) ( ) ,
(6)

(0)

time invariant

(1)

time variant

where A(0) is a full-column-rank constant matrix with the same size as A(t), A(1) is a full-column-rank constant 
vertically-long rectangular (or square) matrix, and R(t) is a matrix composed of either smoothly or discontin-
uously changing functions in time. Each component of R(t) is supposed to on average slowly change, i.e., their 
time-derivatives are typically much smaller in magnitude than those of s(t). This condition is required to dis-
tinguish whether changes in inputs are caused by changes in the mixing matrix A(t) or the hidden sources s(t). 
Formally, A(t) expresses infinite contexts along the trajectory of R(t). This is a more complicated setup than the 
standard BSS in the sense that both sources and the mixing matrix change in time. Nonetheless, the EGHR can 
achieve BSS for all contexts if a solution of the synaptic strength matrix that satisfies W(A(0), A(1)) = (Ω, O) exists. 

Figure 3. BSS with large number of contexts. One of 100 different contexts was randomly selected for each 
session. Each session contained T = 105 time steps, and the training continued for 600 sessions. In each session, 
the 2000-dimensional sensory inputs (x) were generated from ten-dimensional hidden sources (s), which 
independently followed the unit Laplace distribution, through a context-dependent random mixing matrix 
A(k). The neural network consisting of ten-dimensional neural outputs (u) was trained with a learning rate of 
η = 10−5. (A) Trajectories of BSS error for context 1 and 100 and the average BSS error over contexts 1 to 100. 
The shaded area shows the standard deviation. (B) Mappings from ten sources to ten outputs in contexts 1 and 
100 after training. Elements of matrix K(k) = W A(k) with k = 1 and 100 are illustrated by the heat map. Only 
one element in each row and column takes ±1, indicating the one-to-one mapping from sources to outputs, 
i.e., the success of multi-context BSS. (C) The dynamics of synaptic strength matrix W projected in the three-
dimensional space spanned by the first to third principal components (PC1 to PC3). The matrix starts from a 
random initial point (star mark) and converges to the null space, in which synaptic strengths are optimized for 
all trained contexts. The C code for this simulation is appended as Supplementary Source Codes.
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Here, Ω represents the identity matrix up to permutations and sign-flips and O represents a matrix with zero ele-
ments. Such a solution generally exists if and only if (A(0), A(1)) is a full-column-rank matrix (see Methods for the 
derivation). The above condition means that the network performs BSS based on the time-invariant features A(0) 
of the mixing matrix, while neglecting the time-varying features A(1)R(t). This can be viewed as a way to compress 
high-dimensional data. This is distinct from the standard dimensionality reduction approach by PCA, which 
would preferentially extract the time-variant features due to their extra variances. Moreover, the ability to per-
form dimensionality reduction is an important advantage of the EGHR over conventional ICA algorithms, such 
as the infomax-based ICA10,11, natural gradient12 and nonholonomic39 algorithms, and the ICA mixture model40, 
because these learning algorithms do not learn effective dimensionality reduction in the multi-context BSS setup 
due to their construction (see Methods for mathematical explanations).

In the simulation, we supposed R(t) to be a two-dimensional rotation matrix, ω ω= −R t t t( ) (cos , sin ;
ω ωt tsin , cos ), with an angular frequency of ω π= 2 /100. The simulation showed a reduction in the BSS error 

(Fig. 4B). At the same time, K = WA converged to the identity matrix up to permutations and sign-flips, K → (0,1; 
−1,0) in this case, although A continuously changed in time (Fig. 4C,D). As illustrated in Fig. 4E, the synaptic 
matrix W became perpendicular to the time-varying features A(1) (i.e., WA(1) = O), by a monotonic reduction of 
the overlap between W and A(1) (defined by the Frobenius norm of their product). After training, the overlap 
converged to zero. Hence, synaptic strengths were optimized regardless of R(t) at this solution, which enabled the 
network to perform BSS with a virtually infinite number of contexts. In addition, the neural network that imple-
ments the EGHR could learn W perpendicular to A(1) in another simulation setup, where R(t) was a 2 × 2 matrix 
and its elements were modeled as Ornstein-Uhlenbeck (OU) processes with time constant τ = 10−3 (Fig. 4F). 
These results indicate that the EGHR can perform the multi-context BSS with a wide range of time-varying mix-
ing matrices. Indeed, a mathematical analysis shows that multi-context BSS is possible for a general time-varying 
matrix R(t) as long as it changes slowly enough (see Methods).

Next, we demonstrated the utility of the EGHR, when supplied with redundant inputs, by using natural bird-
songs and a time-variant mixing matrix that expressed a natural contextual change. Figure 5 illustrates the BSS 
task of two birdsongs when birds moved around the agent; thereby, the mixing matrix changed in time according 
to the positions of the birds (see, the entire movie at http://toyoizumilab.brain.riken.jp/dataset/Isomura2019/
Isomura_Toyoizumi_SciRep2019_SupplementaryMovieS1.mp4). To obtain time-independent features, we 

Figure 4. BSS with time-varying mixing matrix. (A) Top: Schematic image of sensory inputs generated from two 
sources through time-varying mixing matrix A(t). The mixing matrix is controlled by the low-dimensional 
rotation matrix R(t). Bottom: Trajectories of hidden sources and an element of R(t), showing the difference in their 
time courses. (B) Trajectory of BSS error. (C) Trajectories of mapping weights from sources to outputs, i.e., matrix 
K = W A(t). (D) Dynamics of matrix K projected on the first two-dimensional PCA subspace of K’s trajectory over 
training. The matrix starts from a random initial point (star mark) and follows a spiral trajectory as it converges to 
a subspace in which synaptic matrix W is perpendicular to the time-varying component A(1). (E) Overlap of 
synaptic matrix W with time-invariant component A(0) and time-variant component A(1). The overlap between two 
matrices was defined by the Frobenius norm of their product, i.e., ≡ ∑WA WA( )k

F ij
k

ij
( ) ( ) 2 . (F) Overlap 

of synaptic matrix W with A(0) and A(1) when elements of R(t) were modeled as OU processes. Each source was 
randomly generated by the unit Laplace distribution. The learning rate of η = 10−5 was used. The C code for this 
simulation is appended as Supplementary Source Codes.
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assumed that the two birds moved around in non-overlapping areas. For simplicity, we also assumed that the two 
birds moved around at different heights. The agent received mixtures of the two birdsongs through six micro-
phones with different direction preferences. In the current context, the z-axis of the birds was time-invariant and 
the x- and y-axes of the birds were time-variant, although the observer was not informed about this. By tuning 
synaptic strengths by the EGHR, neural outputs were established to infer each birdsong, while the mixing matrix 
changed continuously. Crucially, after training, the mapping from the sources to the outputs (K = W A) became 
constant with time, although matrix A was time-dependent. More precisely, the EGHR found a representation 
where W satisfied W(A(0), A(1)) = (Ω, O). Hence, neural outputs could separate the two birdsongs, although the 
amplitudes of the songs recorded by the microphones continuously changed depending on the positions of birds.

Generalization for inexperienced environments. Finally, we examined the generalization capability of 
the multi-context BSS by the EGHR using natural birdsongs. For the sake of simplicity, we reduced Eq. (6) by con-
sidering R(t) that changes discontinuously at the beginning of each session but otherwise is constant. Specifically, 
we considered the mixing matrix

= + + +� �� ��������� ���������
‐ ‐

A v A A v A v( ) ,
(7)

n
n

(0)

context independent

(1)
1

( )

context dependent

written using context-independent matrix A(0), context-dependent matrices {A(1), …, A(n)}, and context vector 
v ≡ (v1, …, vn) that discontinuously changes at the beginning of a new session. The first term in the right-hand 
side of Eq. (7) corresponds to the context-independent (i.e., constant) component, which should be a 
full-column-rank matrix to provide an ICA solution. Similarly to the case with the continuously time-varying 
mixing matrix, the EGHR can establish synaptic matrix W that expresses the pseudo inverse of A(0) up to permu-
tations and sign-flips, while keeping W perpendicular to A(1), …, A(n), i.e., W(A(0), A(1), …, A(n)) = (Ω, O, …, O).  
Notably, the EGHR can establish such W by using only a handful samples of v out of combinatorially many pos-
sibilities. This is because the mappings from sources to inputs are restricted to be a linear transformation, and 
thereby, observations with the polynomial (probably quadratic) order number of contexts can identify the map-
ping for all contexts. This property is particularly useful when v is high dimensional.

In this demonstration, ten sets (contexts) of mixtures of ten birdsongs were introduced to our agent, with 
redundant sensory inputs composed of 100 mixed sound waves (Fig. 6). Those contexts were defined by ran-
dom mixing matrices A(0), A(1), …, A(4). We trained the network using only 10 contexts: v = (1,0,0,0), (½,½,0,0), 
(0,1,0,0), (0,½,½,0), (0,0,1,0), (0,0,½,½), (0,0,0,1), (½,0,0,½), (½,0,½,0), (0,½,0,½). At the beginning of each ses-
sion, v was randomly selected from the above ten vectors, which provided a discrete random transition among 10 
contexts. Ten output neurons learned to infer each birdsong from their mixtures, by updating synaptic strengths 
through the EGHR. After training, they successfully represented the ten birdsongs without further updating 

Figure 5. BSS of birdsongs when two birds move around the agent. A snapshot of the simulation overview 
movie after training is shown. Songs (or sources) generated by two birds s1, s2 (right top) are mixed with a 
time-varying mixing matrix A, resulting in six-dimensional sensory inputs x1, …, x6 (right middle). The mixed 
signals correspond to the recording through six microphones with different preferences. The neural network 
converts the six inputs into two neural outputs, u1 and u2 (right bottom), using synaptic strength matrix W. 
The synaptic updates by the EGHR enable the outputs to encode each birdsong. Matrix K = W A represents the 
mapping from sources to outputs. See Methods for the detailed simulation setup.
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synaptic strengths. Crucially, the network could perform BSS even in an inexperienced context (for example, in 
v = (¼,¼,¼,¼)). This speaks to the generalization of the multi-context BSS for unseen test contexts.

We quantitatively showed that, as learning progresses, the BSS error for test contexts (defined using 20 ran-
domly sampled v that were inexperienced in the training), as well as for trained contexts, decreased (Fig. 6A). The 
trajectory of the first two principal components (PC1 and PC2) of K exhibits their convergence to a fixed point at 
later sessions (Fig. 6B). Here PC1 and PC2 together captured 63.4% of the total variance. Regardless of the given 
context, matrix K converged to a constant matrix that was the same as the identity matrix up to permutations 
and sign-flips. The convergence of W to this fixed point was validated by plotting the trajectories of the overlaps 
between W and A components (Fig. 6C). While the overlap between W and A(0) increased as learning progressed, 
the overlap with context-dependent components (A(1), …, A(4)) decreased and converged to zero, showing that W 
became perpendicular to A(1), …, A(4) by the EGHR. We conducted a series of simulations with different initial 
conditions and confirmed the reliability of convergence, although the convergence speed depended on the initial 
relative position of W compared to A(0), A(1), …, A(4). Hence, this learnt network could perform BSS with A(v) 
determined by arbitrary v in the four-dimensional space, without further synaptic updating or transient error, 
while the network was trained only with 10 contexts. Those results highlight the significant generalization capa-
bility of the neural network established by the EGHR and the robustness against inexperienced environments for 
performing BSS.

Discussion
While a real environment comprises several different contexts, humans and animals retain the experience of past 
contexts to perform well when they find themselves in the same context in the future. This ability is known as 
conservation of learning or cognitive flexibility25. Although analogous learning is likely to happen during BSS, the 
conventional biological BSS algorithms37,38 must forget the memory of past contexts to learn a new one. Thereby, 
when the agent subsequently encounters a previously experienced context, it needs to relearn it from the very 
beginning. We overcame this limitation by using the described algorithm, the EGHR. The crucial property of the 
EGHR is that when the number of inputs is larger than the number of sources, the synaptic matrix contains a null 
space in which synaptic strengths are equally optimized for performing BSS. Hence, with sufficiently redundant 
inputs, the EGHR can make the synaptic matrix optimal for every experienced context. This is an ability that the 
conventional biologically plausible BSS algorithms do not have, due to the constraint that the number of inputs 
and outputs must be equal15; however, we argue that this ability is crucial for animals to perceive and adapt to 
dynamically changing multi-context environments. It is also crucial for animals to generalize past learning to 
inexperienced contexts. We also found that, if there is a common feature shared across the training contexts, the 
EGHR can extract it and generalize the BSS result to inexperienced test contexts. This speaks to a generalization 
capability and transfer learning, implying the prevention of overfitting to a specific context; alternatively, one 
might see this as an extraction of a general concept across contexts. Therefore, we argue that the EGHR is a good 
candidate model for describing the neural mechanism of conservation of learning or cognitive flexibility for BSS.

Moreover, the process of extracting hidden sources in a multi-context BSS setup can be seen as a novel concept 
of dimensionality reduction42. If the dimensions of input are greater than the product of the number of sources 
and the number of contexts, the EGHR can extract the low-dimensional sources (up to context-dependent permu-
tations and sign-flips), while filtering out a large number of context-dependent signals induced by changes in the 
mixing matrix. ICA algorithms for multi-context BSS39–41 and undercomplete ICA for compressing data dimen-
sionality15,17,53 have been separately developed. Nevertheless, conventional ICA algorithms for multi-context BSS 
cannot learn efficient dimensionality reduction, and thus, to our knowledge, our study is the first to attempt 
dimensionality reduction in the multi-context BSS setup. This method is particularly powerful when a common 
feature is shared across the contexts, because the EGHR can make each neuron encode an identical source across 
all contexts. Our results are different from those obtained using standard dimensionality reduction approaches 
by PCA18,19, because PCA is used for extracting subspaces of high-variance principal components and hence 

Figure 6. Generalization of multi-context BSS. (A) Trajectories of the BSS error with four trained contexts and 
the average BSS error over 20 inexperienced test contexts, created using randomly sampled v. (B) Dynamics of 
matrix K projected on the first two-dimensional PCA subspace. The matrix starts from a random initial point 
(star mark) and converges to a fixed point, at which the synaptic matrix entertains every trained context. (C) 
Overlap of synaptic matrix W with context-independent component A(0) and context-dependent components 
A(1), …, A(4). Overlap between two matrices is defined by |WA(k)|F, as described in Fig. 4. See Methods for the 
detailed simulation setup.
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would preferentially extract the context-dependent varying features, given that each source has the same variance. 
Therefore, our study proposes an attractive use of the EGHR for dimensionality reduction.

It is worth noting that the application of standard ICA algorithms to high-pass filtered inputs cannot solve the 
multi-context BSS problem. This is because context-dependent changes in the mixing matrix not only change the 
means of the inputs, which can be removed by high-pass filtering, but also change the gain of how fluctuations 
of each source are propagated to input fluctuations. Hence, the difference in contexts cannot be expressed as a 
linear ICA problem after high-pass input filtering. Therefore, selective extraction of context-invariant features is 
an advantage of the EGHR. Moreover, if provided with redundant input, the EGHR can solve multi-context BSS 
even if the context changes continuously in time, as we demonstrated in Figs. 4, 5.

We demonstrated that a neural network learns to distinguish individual birdsongs from their superposition. 
Young songbirds learn songs by mimicking adult birds’ songs54–57. A study reported that neurons in songbirds’ 
higher auditory cortex exhibit a teacher specific activity58. One can imagine those neurons correspond to the 
expectation of hidden sources (u), as considered in this study. Importantly, the natural environment that young 
songbirds encounter is dynamic, as we considered in Fig. 5. Therefore, the conventional BSS setup, which assumes 
a static environment or context, is not suitable for explaining this problem. It is interesting to consider that young 
songbirds might employ some computational mechanism similar to the EGHR to distinguish a teacher’s song 
from other songs in a dynamically changing environment.

Biological neural networks implement an EGHR-like learning rule. The main ingredients of the EGHR are 
Hebbian plasticity and the third scalar factor that modulates it. Hebbian plasticity occurs in the brain depending 
on the activity level44,59, spike timings60–63, or burst timings64 of pre- and post-synaptic neurons. In contrast, the 
third scalar factor can modify the learning rate and even invert Hebbian to anti-Hebbian plasticity50, similarly to 
what we propose for the EGHR. In general, such a modulation forms the basis of a three-factor learning rule, a 
concept that has recently received attention (see20,65,66 for reviews), and is supported by experiments on various 
neuromodulators and neurotransmitters, such as dopamine45–47, noradrenaline48,49, muscarine67, and GABA50,51, 
as well as glial factors52. (These factors may encode reward68–72, likelihood73, novelty/surprise74, or error from 
a prior belief15,17 to achieve various types of learning, implying the existence of a unified three-factor learning 
framework.) Importantly, the EGHR only requires such a signal that conveys global information to neurons to 
achieve learning. Furthermore, a study using in vitro neural networks suggested that neurons perform simple 
BSS using a plasticity rule that is different from the most basic form of Hebbian plasticity, by which synaptic 
strengths are updated purely as a product of pre- and postsynaptic activity75,76. A candidate implementation of the 
EGHR can be made for cortical pyramidal cells and inhibitory neurons; the former constituting the EGHR output 
neurons and encoding the expectations of hidden sources, and the latter constituting the third scalar factor and 
calculating the nonlinear sum of activity in surrounding pyramidal cells. This view is consistent with the circuit 
structure reported for the visual cortex77,78. These empirical evidences support the biological plausibility of the 
EGHR as a candidate model of neuronal BSS.

A local computation of the EGHR is highly desirable for neuromorphic engineering23,24,79,80. The EGHR 
updates synapses by a simple product of pre- and postsynaptic neurons’ activity and a global scalar factor. Because 
of this, less information transfer between neurons is required, compared to conventional ICA methods that 
require non-local information10–12, all-to-all plastic lateral inhibition between output neurons37,38, or an addi-
tional processing step for decorrelation13. The simplicity of the EGHR is a great advantage when implemented 
in a neuromorphic chip because it can reduce the space for wiring and the energy consumption. Furthermore, 
unlike the conventional ICA algorithms that assume an equal number of input and output neurons, a neuromor-
phic chip that employs the EGHR with redundant inputs would perform BSS in multiple contexts, as allowed by 
the network memory capacity, without requiring readaptation. The generalization capability of the EGHR, as 
demonstrated in Fig. 6, is an additional benefit, as the EGHR captures the common features shared across training 
contexts to perform BSS in inexperienced test contexts.

Notably, although we considered a linear BSS problem in this study, multi-context BSS can be extended to 
non-linear BSS, in which the inputs are generated through a non-linear mixture of sources81,82. To solve this prob-
lem, a promising approach would be to use a linear neural network. A recent study showed that when the ratio 
of input-to-source dimensions and source number are large, a linear neural network can find an optimal linear 
encoder that separates the true sources through PCA and ICA, thus asymptotically achieving zero BSS error83. 
Because both the asymptotic linearization and multi-context BSS by the EGHR are based on high-dimensional 
sensory inputs, combining these two might be a useful approach to solve the multi-context and non-linear BSS 
problem.

In summary, we demonstrated that the EGHR can retain memories of past contexts and, once the learning 
is achieved for every context, it can perform multi-context BSS without further updating synapses. Moreover, 
the EGHR can find common features shared across contexts, if present, and uses them to generalize the learning 
result to inexperienced contexts. Therefore, the EGHR will be useful for understanding the neural mechanisms 
of flexible inference and sensory representation under dynamically changing environments, and for creating 
brain-inspired artificial general intelligence.

Methods
Model and learning rule. The neural network model and used learning rule (the EGHR) are described in 
the Results section.

Definition of BSS error. We calculated the maximum and second maximum rows as ′ =i Kargmaxi ij
k( )  and 

″ = ≠ ′i Kargmaxi i ij
k( )  and defined the BSS error of column j by the ratio of the values in the two rows: 
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ε = ′″K K/j
c

i j
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i j
k( ) ( ) . Similarly, the BSS error of row i: ε = ′″K K/i

r
ij
k

ij
k( ) ( )  was obtained from the ratio of the maximum 

and second maximum columns, where ′ =j Kargmaxj ij
k( )  and ″ = ≠ ′j Kargmaxj j ij

k( ) . The BSS error (for the whole 
K) was defined as the average of them: ε ε ε ε≡ + … + + + … +BSS error N N( )/2 ( )/2c

N
c

s
r

N
r

u1 1s u
.

Analysis of Bss solution: existence and linear stability. Supposing that Nu = Ns, we defined the trans-
form matrix K(k) by

≡ .K WA (8)k k( ) ( )

For Nx ≥ Ns, the ICA for context k is achieved when K(k) is the identical matrix up to permutations and 
sign-flips. Hence, when amd only when column vectors of a block matrix (A(1), …, A(C)) are linearly independent 
of each other, i.e., if and only if (A(1), …, A(C)) is a full-column-rank matrix, an ICA solution that separates all 
sources for context 1, …, C exists. Namely, W achieves the multi-context BSS when it satisfies

… = … = Ω … ΩK K W A A( , , ) ( , , ) ( , , ), (9)C C C(1) ( ) (1) ( ) (1) ( )

where Ω(k) is an Nu × Ns matrix equivalent to the identity matrix up to permutations and sign-flips. Regarding the 
i-th row of matrix K(k), as denoted by a row vector …( )K K, ,i

k
iN

k
1
( ) ( )

s
, the achievement of ICA is justified when one 

element is one and the others are zero. Thus, there are many candidate sets of …( )W W, ,i iN1 x
 that can achieve ICA, 

because Nx is larger than Ns. Our numerical analyses showed that among these potential solutions, the one that is 
the nearest to the solution for the previous context is likely to be chosen. This can be understood as follows: when 
the network finds an ICA solution for all contexts, the error (i.e., cost function of the EGHR), including transient 
periods between two contexts, is minimized; hence, according to the gradient descent, synaptic strengths con-
verge to such a solution as training progresses. Owing to this mechanism, the initial errors converge to zero when 
previously experienced environments are provided as stimuli.

We showed that W that satisfies K = WA = Ω gives a fixed point for the EGHR cost function, 
= −∂ ∂ = − =W L W E E u g u x O/ ( ( )) ( ) T

0 , and thus gives an ICA solution, where A is a vertically long or square 
full-rank mixing matrix15,17. Regarding BSS with a time-varying mixing matrix, from A = A(0) + A(1)R, the time 
differential of K yields = + + =  K W A A R WA R O( )(0) (1) (1) . Here, we assume that A(0) and A(1) are full 
column-rank matrices and R is a general NR × Ns time-varying matrix. Because =W O holds for the fixed point, 
W gives an ICA solution if and only if =WA R O(1) . Thus, W needs to satisfy W(A(0), A(1)) = (Ω, O) to give a 
multi-context ICA solution. The condition for such an ICA solution to exist was obtained as follows: we consid-
ered this as a BSS problem such that

= .( )x A A s
Rs( , ) (10)

(0) (1)

The singular value decomposition is given by =A A US V V( , ) ( , )T T(0) (1)
0 1 , where ∈ × +U N N N( )x s R , 

∈ × +V N N N
0

( )s s R , and ∈ × +V N N N
1

( )R s R  with =V V OT
0 1  are orthogonal matrices and ∈ + × +S N N N N( ) ( )s R s R  is a diag-

onal matrix of singular values. From this, W = ΩV0S−1X should hold to ensure W(A(0), A(1)) = (Ω, O), where X is 
an orthogonal matrix satisfying XU = I. Hence, ICA solutions exist when and only when column vectors of (A(0), 
A(1)) are linearly independent of each other.

Moreover, we analyzed a sufficient condition on the time constant of R(t) for the stability of the ICA solution. 
From our previous analysis, the linear stability for fixed points is determined by the following second differential 
form15,17:

∑ ∑ ∑ ∑=










+ + Φ + Φ + + Φ
= = = ≠

d L dK dK dK dK dK dK(1 ) 1
2

( 2 ),
(11)i

N

ii
i

N

ii ii
i

N

i j
ij ij ij ji ji ji

2

1

2

1

2

1

2 2u u u

where Φ ≡ − ′p s g s scov[ log ( ), ( ) ]ii i i i0
2  and Φ ≡ − ′ + 

−

 ′p s g s s p s s g scov[ log ( ), ( )] cov log ( ), ( )ij i i j j j i0

2
0

2  for i ≠ j (note 
that cov[,] is the covariance). The magnitude of dW is assumed to be negligible due to a small learning rate. The 
solution is linearly stable when and only when Φii > −1 and ΦijΦji > 1. When change in R(t) is sufficiently slower 
than that of s(t) on average, i.e., when dK = dW(A(0) + A(1)R) + WA(1) dR is sufficiently small, the above linear 
stability condition determines the stability of the fixed point. However, when R(t) changes faster than or as fast as 
s(t), dK is no longer a small fluctuation, because of large dR, and therefore K may leave from the neighborhood of 
the fixed point to the region where the second order approximation is no longer accurate. Therefore, as long as the 
time constant of R(t) is chosen to ensure the averaged fluctuation is small and thus K is within the neighborhood 
of the fixed point, the EGHR with a time-varying mixing matrix has the same linear stability condition as the 
conventional EGHR without context switching.

Analysis of conventional ICA algorithms. Here we show that, unlike the multi-context EGHR, conven-
tional ICA algorithms cannot be used for the dimensionality reduction purpose. Some of the ICA algorithms in 
consideration are written as ∝W F u t x t W( ( ), ( ))  or, equivalently,

η+ = +W t I F u t x t W t( 1) [ ( ( ), ( ))] ( ) (12)
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in each discrete time step t (t = 1, 2, …, T) with learning rate η. The functional F specifies an individual learning 
rule, namely, the natural gradient algorithm takes F(u, x) = I −〈g(u)uT〉12 and the non-holonomic algorithm takes 

= −⟨ ⟩F u x g u u g u u( , ) diag[ ( ) ] ( ) T 39, where  expresses the element-wise product of two vectors and diag[⋅] 
indicates a diagonal matrix comprising a vector. This class of ICA algorithms cannot perform dimensionality 
reduction. Following Eq. (12), the synaptic strength matrix after training (i.e., at time T) is expressed as

∏ η=




 +







=
W I F u t x t W( ( ( ), ( ))) ,

(13)t

T

1
0

where W0 is the initial synaptic matrix. In dimensionality reduction, we are interested in horizontally long 
Nu × Nx matrices W and W0, which compress Nx-dimensional signal x to Nu-dimensional output u with Nu < Nx. 
However, η∏ += I F u t x t( ( ( ), ( )))t

T
1  changes the strength only within the Nu × Nu degree of freedom, so that this 

is equivalent to the ICA of Nu-dimensional signals W0x that is already compressed by the non-optimal matrix W0. 
Hence, this class of ICA algorithm can be used for separating already (sub-optimally) compressed signals W0x but 
not for reducing signal dimensions. The infomax-based ICA algorithm10,11 has the same fixed point and linear 
stability conditions as the natural gradient algorithm; thus, again, it does not perform dimensionality reduction. 
Next, the ICA mixture model was proposed, which is a combination of ICA and a mixture model, to perform 
multi-context ICA by assigning one of the multiple ICA models to each context40. In this model, the pseudo 
inverse of the synaptic matrix Wk for the k-th model is updated instead of Wk by d(Wk)+/dt ∝ zk(t)
(Wk) + (I − g(u(t))u(t)T), where zk(t) ∈ [0, 1] is the probability of the k-th model being selected. Similar to Eq. 
(13), the pseudo inverse of the synaptic strength matrix after training is expressed as

∏ η=




 + −







+ +

=
W W I z t I g u t u t( ) ( ) ( ( )( ( ( )) ( ) )) ,

(14)
k k

t

T

k
T

0
1

which indicates again that the compression is determined by W xk
0 . Therefore, the ICA mixture model does not 

perform dimensionality reduction, either. Hence, the use of multi-context ICA for dimensionality reduction is 
our novel contribution to the literature, which is beyond the original proposal of the EGHR or conventional 
multi-context ICA algorithms.

simulation protocols. For figure 5: Two birdsongs were downloaded from Xeno-canto (https://www.
xeno-canto.org/132149, https://www.xeno-canto.org/133054). Two hidden sources were created by trimming the 
first 60 s of these songs (with 4410-Hz time resolution) and normalizing them, to ensure each source sequence 
had zero mean and unit variance. During the training, the song sequences were repeated. To add stochasticity, a 
hidden source was defined by the sum of a song and a white-noise sequence generated by a Laplace distribution. 
The mixing matrix was defined by 6 ×  2 random matrices, A (0),  A (1),  and a rotation matrix, 

ω ω ω ω≡ −R t t t t t( ) (cos , sin ; sin , cos ). The angular frequency ω was randomly set as −0.1π, 0, or 0.1π [rad/s], 
by following Markov process with a transition probability of 1/8820. The training time and learning rate were 
defined by T = 4410 × 6000 [step] and η = 10−7.

For figure 6: Ten birdsongs were downloaded from Xeno-canto (the URLs are https://www.xeno-canto.
org/****** where ****** was replaced with the following numbers: 27060, 64735, 67307, 110303, 121326, 
121691, 126481, 132149, 133054, 133862). Ten hidden sources were created in the same manner as described 
above. The mixing matrix was defined by 100 × 10 random matrices A(0), A(1), A(2), A(3), A(4), where …ˆ ˆA A, ,

(1) (4)
 

were randomly generated and A(0), …, A(4) were defined by = + + +ˆ ˆ ˆ ˆA A A A A( )/4(0) (1) (2) (3) (4)
 and 

= −ˆA A Ak k( ) ( ) (0), for k = 1, …, 4. This treatment was served to ensure that A(1), …, A(4) do not involve common 
features across contexts. The training comprised 120 sessions, with each session continued for T = 4410 × 600 
[step]. The context vector v randomly chose one of the following ten vectors, v = (1,0,0,0), (½,½,0,0), (0,1,0,0), 
(0,½,½,0), (0,0,1,0), (0,0,½,½), (0,0,0,1), (½,0,0,½), (½,0,½,0), (0,½,0,½), at the beginning of each session and 
maintained the value during the session. The learning rate was defined by η = 2 × 10−7. For the test, 20 randomly 
generated vectors were used, and their elements were randomly sampled from [0,1] and then normalized to sat-
isfy v1 + v2 + v3 + v4 = 1.
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