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Prediction is essential for both biological organisms1–3 and 
machine learning4–6. In particular, they both need to predict 
the dynamics of newly encountered sensory inputs (that is, test 

data) based on and only on knowledge learned from a limited num-
ber of past experiences (that is, training data). Generalization error 
is a standard measure of the generalization capability of predicting 
the future consequences of previously unseen input data, which is 
defined as the difference between the training and test prediction 
errors. It is thus crucial for organisms and machines to find a pre-
diction strategy with a small generalization error, because otherwise 
their predictions will fail because of overfitting to the training data.

Despite the importance of generalizing prediction, current 
mainstream machine learning approaches have some limitations. 
The approaches can be categorized into three major groups, and 
their limitations are summarized as follows: (1) The most basic 
prediction strategy is to learn a direct mapping from past to future 
inputs in the form of an autoregressive model (Fig. 1a). Although 
autoregressive models are simple to construct and guarantee global 
convergence, their predictions contain a large generalization error 
because the mapping from the observations to the prediction is 
often redundant, leading to severe overfitting when the number 
of training samples is limited7,8. Thus, to make accurate predic-
tions, low-dimensional (that is, concise) representations should be 
extracted from high-dimensional (that is, redundant) sensory data. 
(2) A dimensionality reduction technique can be used to obtain a 
concise representation;9 however, this is often achieved separately 
from the prediction step—for example, by first applying an auto-
encoder to reduce the dimensionality10,11 and then employing a 
long short-term memory to predict the sequence12 (Fig. 1b). The 
first autoencoding step—which provides a low-dimensional rep-
resentation that minimizes the loss for reconstructing the current 
input—is the most basic dimensionality reduction strategy. One 
problem with this approach is that autoencoders may preferentially 
extract observation noise that is useless for prediction, owing to its 
extra variance. From a prediction perspective, it is more helpful to 

reduce the dimensionality to minimize the prediction error, simi-
lar to the approach used in time-lagged autoencoders (TAEs)13 and 
their variants14,15 (Fig. 1c). These approaches combine predictions 
with dimensionality reduction in a single architecture. (3) A major 
approach to time-series prediction is to construct a state-space 
model (SSM). SSMs, which include the Kalman filter16 and its non-
linear variants17,18, simultaneously perform dimensionality reduc-
tion and prediction (Fig. 1d). From this model-based perspective, 
the best prediction is achieved when an SSM employs the states 
and parameters that match the true properties of the external sys-
tem. However, the problem becomes difficult when both the hid-
den states and system parameters are unknown. In particular, their 
predictions become inaccurate owing to nonlinear interactions 
between the uncertainties in hidden states and parameters, because 
they can create spurious solutions. Furthermore, the dimensionality 
of hidden states, which is essential for prediction accuracy, is dif-
ficult to optimize. Conventional model selection approaches using 
some information criterion19–21, structural risk22 or cross-validation23 
would fail to identify the optimal dimensionality when the state or 
parameter estimation converges to a suboptimal solution. In short, 
all three approaches have essential drawbacks that interfere with the 
generalization of accurate predictions.

To overcome these limitations, we establish a method that can 
solve this simultaneous optimization problem of hidden states, sys-
tem parameters and dimensionality with a global convergence guar-
antee. We develop an unsupervised learning scheme for extracting 
features that are essential for prediction, which we call predictive 
principal component analysis (PredPCA). It is formally derived 
from the minimization of the squared prediction error and can 
extract low-dimensional predictive features from high-dimensional 
sensory inputs, even in the presence of observation noise that is 
much larger than the signals themselves. This robustness is because 
PredPCA conducts post hoc dimensionality reduction to extract 
a concise representation of the predicted input (Fig. 1e), unlike 
autoencoders or SSMs. Moreover, the architecture of PredPCA is  
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suitable for noise reduction because it predicts the subsequent 
input based on multi-timestep basis functions, unlike TAEs and 
their variants. These properties allow PredPCA to find hidden 
states (refer to blind source separation24) and to perform long-term 
prediction reliably and accurately. In particular, system parameter 
identification25,26 using PredPCA contrasts with conventional meth-
ods. It is guaranteed to asymptotically identify the true parameters 
of canonical nonlinear systems (see below for the definition) in the 
large sample-size limit, when the mappings from hidden states to 
sensory inputs are sufficiently high-dimensional. In addition, based 
on Akaike’s statistics19,27, we analytically derive a mathematical for-
mula that estimates the test prediction error of PredPCA. It shows 
that the generalization error is proportional to an entropy that is due 
to the sampling fluctuation27. The minimization of this formula can 
optimize unknown free parameters, including the rank of system 

dimensions and number of past observations used for prediction, 
and can provide the global minimum of the test prediction error. 
We mathematically and numerically demonstrate that filtering out 
unpredictable noise by using PredPCA is essential to maximizing 
the prediction generalization capability.

Results
Overview of PredPCA. In this work, we assume that hidden states 
xt generate higher-dimensional sensory inputs st as follows:

st = g (xt) + ωt, (1)

and the dynamics of hidden states are described by

xt+1 = f (xt, xt−1, xt−2,…) + zt, (2)

where zt and ωt are mutually independent white noises, with zero 
means and covariances Σz and Σω (Fig. 2a, left, and Methods sec-
tion ‘System'). Process noise zt adds stochasticity into the hidden 
state dynamics, while observation noise ωt represents any unpre-
dictable fluctuations that we wish to remove. PredPCA is applicable 
to sensory data generated from systems involving either Gaussian 
or non-Gaussian noise to extract features and characterize system 
properties, although the identification of noise distributions is more 
straightforward when provided with Gaussian noise (see Methods 
section ‘System parameter identification'). Although this paper 
focuses on white noise, PredPCA’s outcomes would also be accurate 
with coloured noise as long as the auto-correlation time constant of 
ωt is smaller than that of xt. To apply PredPCA to continuous-time 
systems, the time bin size should be determined depending on their 
applications. Table 1 presents the glossary of expressions.

PredPCA aims to extract the components containing the most 
information for predicting the next input st+1 based on current and 
past observations st, st−1,…, st−Kp+1. With this in mind, we con-
sider a linear neural network whose output is given by

ut+1|t = Vϕt, (3)

where ut+1|t is an Nu-dimensional vector of encoders, V is a (hori-
zontally long) Nu × Nϕ encoding synaptic weight matrix, and 

ϕt ≡
(

sTt , sTt−1,…, sTt−Kp+1

)T
 is an Nϕ-dimensional vector of linear 

basis functions that summarize current and past observations. We 
refer to this linear encoder as a neural network, intending an analogy 
to biological neural networks and to highlight potential applications 
to neuromorphic computation (see ‘Discussion' section for further 
details). Unlike standard PCA28,29 and autoencoders10,11, which min-
imize the reconstruction error in the current input, PredPCA mini-
mizes the prediction error ϵt+1|t ≡ st+1 −WTut+1|t, defined as the 
difference between the actual next input at t + 1 and the prediction 
based on inputs up to t. Here, WT is an Ns × Nu decoding synaptic 
weight matrix used for predicting the next input st+1 based on the 
concise encoders ut+1|t (where we introduced the transposed matrix 
WT rather than W for a notational reason that will become clear 
below). PredPCA’s cost function L is defined as the expectation of 
the squared prediction error over the training period T:

L ≡

1
2

〈

∣

∣ϵt+1|t
∣

∣

2
〉

q
(4)

Here, ⟨•⟩q ≡
1
T
∑T

t=1 • indicates the expectation over the empiri-
cal distribution q. By minimizing this cost function with respect 
to V, we obtain the optimal encoding weights as V = WQ, where 

Q ≡

⟨

st+1ϕ
T
t
⟩

q
⟨

ϕtϕ
T
t
⟩

−1
q  (see Methods section ‘Derivation of 

PredPCA'). Thus, ut+1|t = Wst+1|t holds, where st+1|t = Qϕt is the 
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Fig. 1 | Five different prediction model structures. A black bar denotes 
a layer of a neural network, whereas blue and green trapezoids denote 
synaptic weight matrices for prediction and dimensionality reduction, 
respectively. a, Naive autoregressive models directly compute the 
maximum likelihood estimator of the next input st+1|t based on the 

bases ϕt ≡

(

sTt , sTt−1, …, s
T
t−Kp+1

)T
 that summarize current and past 

observations. b, Two-step prediction models first extract a concise 
representation ut using an autoencoder (or principal component analysis, 
PCA) by minimizing the loss εt and then predict the next representation 
ut+1|t using a recurrent neural network. c, TAEs and their variants combine 
predictions with dimensionality reduction by performing eigenvalue 
decomposition or singular value decomposition of the transition matrix 
of the input. Note that s̃t ≡ Σ

−1/2
s st denotes the normalized inputs, 

s̃t+1|t ≡ Σ
−1/2
s st+1|t denotes the normalized predicted inputs, and Σs 

denotes the actual input covariance. d, SSMs update the hidden state 
estimator xt|t based on the previous state and current input, and predict 
the next state xt+1|t and input st+1|t. e, PredPCA first computes the maximum 
likelihood estimator st+1|t based on multi-timestep basis functions ϕt and 
then extracts a concise representation ut+1|t, by minimizing the prediction 
error εt+1|t. This scheme can effectively filter out the causes of the 
generalization error.
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maximum likelihood estimator of st+1. The synaptic weight matrix 
W is updated by gradient descent on L. After some additional 
transformations (see Methods section ‘Derivation of PredPCA'),  
we obtain

˙W ∝ −

∂L
∂W =

⟨

ut+1|t

(

st+1 −WTut+1|t

)T
⟩

q
(5)

The fixed point of equation (5) yields the transpose of optimal 
decoding weights that minimize L. The solution ensures that the 
encoders ut+1|t achieve the optimal representation for prediction.

Equation (5) is equivalent to the subspace rule of PCA28, except 
that ut+1|t encodes the future state at time t + 1 instead of the state 
at time t (that is, the standard PCA uses ut|t). This means that 
PredPCA, which is defined by the prediction error minimization, 
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Fig. 2 | PredPCA of handwritten digit sequences. a, On the left we show the system, comprising a generative process (top) and a neural network that 
follows PredPCA (bottom, shaded). The network is trained with an image sequence st of handwritten digits generated from the dynamics of 10-dimensional 
hidden states xt, each element of which expresses one of the ten digits. On the right, we show the 10-dimensional independent encoders (that is, hidden 
state estimator) xt+1|t obtained using PredPCA and ICA. 2 × 104 test samples that are colour-coded by their digit are plotted. b, Comparison with related 
methods in terms of the mean categorization error (that is, false discovery rate), obtained by averaging categorization errors of ten elements of xt+1|t. The 
digits are introduced in ascending order (blue) and Fibonacci sequence (red). An SSM based on a Kalman filter (KF) is used for the ascending sequence, 
while that based on a Bayesian filter (BF) is used for the Fibonacci sequence. The green bars indicate the minimum categorization error among 20 different 
realizations of digit sequences. c, Parameter estimation error measured by the squared Frobenius norm ratio, where the difference between the ground truth 
parameter matrix θ and its estimator θ is divided by their norm, error = |θ − θ|

2
F /max

(

|θ|
2
F , |θ|

2
F
)

. We assume here that the ascending-order handwritten 
digit sequence is generated from a linear system comprising st = Axt + ωt and xt+1 = Bxt + zt (A, black, B, red). The covariance matrices Σx (blue), Σω (green), 
and Σz (grey, inset) are associated with xt, ωt and zt, respectively. d, Test error in predicting the next handwritten digit images in the ascending-order 
sequence, measured by the normalized mean squared error over test samples, error =

〈
∣

∣st+1 −WTut+1|t
∣

∣

2〉
/
〈

|st+1|
2〉. The red line (in the main and 

inset panels) represents a theoretical prediction obtained using equation (7). The blue line denotes the lower bound of the error, calculated via supervised 
learning. The inset depicts the dependence of the test prediction error on the encoding dimensionality Nu (when T = 6,000), where Nu = 10 (green line) is 
optimal. b−d are obtained with 20 different realizations of digit sequences and the error bars indicate the standard deviation, although some error bars in 
d are hidden by the circles. e, Long-term prediction using PredPCA and ICA. A winner-takes-all operation is applied to make greedy predictions of the digit 
sequences. After receiving the first 40 digits, unless those initial digit images are outliers, the network can predict the next 105 digits (and more) without 
any categorization error. See Supplementary Methods 1 and 2 for further details.
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can be decomposed into two steps: computing the maximum likeli-
hood estimator of st+1, st+1|t, followed by a post hoc PCA of st+1|t using 
the eigenvalue decomposition (Fig. 1e). Owing to the global conver-
gence property of the subspace rule for PCA30, the global conver-
gence of equation (5) is also guaranteed. In essence, PredPCA is a 
convex optimization. Crucially, however, only PredPCA (but not the 
standard PCA) can effectively filter out unpredictable observation 
noise, as we demonstrate numerically below and mathematically in 
Methods section ‘Filtering out observation noise'. It is straightfor-
ward to extend PredPCA to multi-step predictions (see Methods 
section ‘Derivation of PredPCA' for further details). We note that 
although this paper focuses on the prediction of subsequent inputs 
(that is, autoregression), it is straightforward to apply PredPCA to 
minimize the generalization error for a class of regression tasks. The 
formulation for this is performed simply by supposing that the hid-
den states xt generate both observations st and a high-dimensional 
target signal yt and by replacing the prediction error εt+1|t  
with εt ≡ yt − WTVϕt.

After extracting the hidden states by using PredPCA, we 
employ independent component analysis (ICA)31,32, which can 
separate the extracted states into independent components as 
long as the true hidden states of the external milieu are actually 
mutually independent. For example, when the network observes a 
sequence of handwritten digits generated using the MNIST data-
set33, PredPCA followed by ICA generates 10-dimensional inde-
pendent encoders xt+1|t, each element of which encodes one of 
the ten possible digits (Fig. 2a, right). The detailed procedure to 
extract xt+1|t from ut+1|t is provided in Methods section ‘Asymptotic 
linearization theorem'.

Previous works have developed methods combining future 
data predictions with dimensionality reduction, for example, 
time-lagged independent component analysis (TICA)14, TAE13 
and dynamic mode decomposition (DMD)15. When ϕt = st, 
PredPCA is involved in this family of methods—thus, one 
may view PredPCA as a combination of these methods and  

autoregressive models based on high-dimensional, multi-timestep 
basis functions. This construction enables PredPCA to effec-
tively filter out observation noise and reduce test prediction error  
(see below).

Key analytical discoveries. We conducted comprehensive math-
ematical analyses to rigorously demonstrate the performance and 
statistical properties of PredPCA. In particular, we demonstrated 
the following two key properties. First, it is mathematically guar-
anteed that PredPCA can identify the optimal (explained below) 
hidden state representation and parameter estimators—up to a 
linear transformation that does not affect prediction accuracy—
for general linear systems and, asymptotically, even for nonlinear 
systems (Methods sections ‘Asymptotic linearization theorem' and 
‘System parameter identification'). When equations (1) and (2) are 
involved in a class of canonical nonlinear systems defined by equa-
tions (8) and (9), a set of hidden states, parameters and dimen-
sionalities that characterize a system is uniquely determined up to 
a trivial linear ambiguity (Methods section ‘System'). Under this 
condition, while using a linear neural network for the encoding, 
the asymptotic linearization theorem34 ensures that PredPCA will 
extract the true hidden states when the hidden state dimensional-
ity is large and the input dimensionality is sufficiently larger than 
the hidden state dimensionality. Briefly, this is because project-
ing the high-dimensional input onto the directions of the major 
eigenvectors of the input covariance effectively magnifies the lin-
early transformed components of the hidden states included in the 
input, while filtering out the nonlinear components (see Methods 
section ‘Asymptotic linearization theorem' for its mathematical 
statement and the conditions for application; see ref. 34 for the 
mathematical proof).

Owing to this linearization property, the hidden state estima-
tor xt+1|t obtained using PredPCA asymptotically converges to a 
linear transformation of the maximum likelihood estimator of 

hidden states xt+1, that is, 
⟨

xt+1ϕ
T
t
⟩

q
⟨

ϕtϕ
T
t
⟩

−1
q ϕt. Hence, PredPCA 

provides the optimal hidden state representation for prediction. 
Furthermore, the analytical expressions of the system parameter 
estimators are derived as functions of xt+1|t, with a convergence 
guarantee to the true parameter values in the large sample-size 
and system-size limits. These parameter estimators are calculated 
by a simple iteration-free computation summarized in Table 2 and 
Methods section ‘System parameter identification'. In essence, 
provided with sufficient but finite training samples, PredPCA can 
identify the hidden states and parameters of large-scale canoni-
cal systems up to a small estimation error. This result is surpris-
ing because the reliable identification of the optimal hidden states 
and the true parameters were previously only described within 
the framework of supervised learning, whereas PredPCA can pro-
vide them by unsupervised learning without relying on the true  
hidden states xt.

Second, PredPCA can maximize the prediction generalization 
capability by minimizing the test prediction error

Ltest ≡
1
2

〈

∣

∣ϵt+1|t
∣

∣

2
〉

(6)

Here, 〈∙〉 ≡ ∫∙p(ϕt,st+1)dϕtdst+1 indicates the expectation over the 
true distribution p(ϕt,st+1) (note the difference from equation (4)). 
In practice, however, the true distribution is unknown for a learner. 
Thus, one needs to estimate equation (6) based on and only on 
parameters estimated from the training data. In the framework of 
the maximum likelihood estimation or squared error minimization, 
the expectation of the test error is expressed as an Akaike infor-
mation criterion (AIC)19 or network information criterion (NIC)20, 
respectively. Similar to the derivation of AIC and NIC, we explicitly 

Table 1 | Glossary of expressions

Expression Description

st Observation

ψt Hidden bases

xt Hidden states

ωt Observation noise

zt Process noise

A Observation matrix (gt = Aψt)

B State transition matrix (ft = Bψt)

Σs, Σψ, Σx, Σω, Σz Covariance matrices of st, ψt, xt, ωt, zt

Ns Dimensionality of observation

Nψ Dimensionality of hidden bases

Nx Dimensionality of hidden states

ut+k|t Encoders

ϕt Basis functions

V Encoding synaptic weight matrix

W Transpose of decoding synaptic weight 
matrix

Nu Dimensionality of encoders

Nϕ Dimensionality of basis functions

〈∙〉q Expectation over empirical distribution q

〈∙〉 Expectation over true distribution p
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compute the expectation of equation (6), with the optimized synap-
tic weights, as

L
︸︷︷︸

Test error expectation

≡ E
{q} [Ltest]

=

1
2

(

tr [Σs]− tr
[

PT
s ΣPred

s Ps
])

︸ ︷︷ ︸

Training error

+

Nϕ

2T tr
[

PT
s

(

Σs − ΣPred
s

)

Ps
]

+O

(

T−

3
2
)

︸ ︷︷ ︸

Generalization error

(7)

The derivation is presented in Methods section ‘Test prediction 
error minimization'. Here, T is the number of training samples, 
Ps is the first-to-Nu-th major eigenvectors of the predicted input 

covariance ΣPred
s ≡

⟨

st+1|tsTt+1|t
⟩

q (where WTW = PsPT
s  holds at 

the fixed point of equation (5)), and Σs ≡
⟨

stsTt
⟩

q is the actual input 
covariance. The expectation E{q}[∙] is taken over different empirical 
distributions q, each of which comprises T training samples and is 
used to optimize synaptic weights.

The expectation of the test prediction error L is characterized 
by two free parameters: the rank of encoding dimensions (Nu) and 
the number of past observations used for the maximum likelihood 
estimation (Kp), where Nϕ = KpNs. Optimizations of Nu and Nϕ per-
formed while updating the synaptic weight using equation (5) pro-
vide the global minimum of L. The optimal encoding dimensionality 
is guaranteed to converge to the true hidden basis dimensionality of 
the canonical system for a large but finite T (Methods section ‘Test 
prediction error minimization'). The second term of L, referred to 
as the generalization error, is associated with an entropy that is due 
to the sampling fluctuation27. This term indicates that only the pre-
diction error projected to the major eigenspace causes the gener-
alization error, which highlights the importance of dimensionality 
reduction to reduce the test prediction error. In short, naively mini-
mizing the training error by using a large encoding dimensionality, 
such as in autoregressive models, leads to overfitting; in contrast, 

minimizing L provides the best encoding dimensionality and num-
ber of past observations to generalize the prediction.

For further details, please see Methods and Supplementary 
Information. The aforementioned analytical results are empiri-
cally validated though numerical simulations by confirming the 
reliable identification of properties of canonical systems defined in 
Methods section ‘System' (Supplementary Fig. 1a–c). Furthermore, 
empirical observations imply that the outcomes of PredPCA can be 
utilized to identify the properties of more general classes of systems 
(for example, a class involving a Lorenz attractor; Supplementary 
Fig. 1d–f), although system parameter identification beyond the 
class defined in Methods section ‘System' has not yet been proved 
mathematically. In what follows, we demonstrate the performance 
of PredPCA using sequential visual inputs comprising handwrit-
ten digits, rotating three-dimensional (3D) objects and natu-
ral scenes (refer to Supplementary Methods sections 1 and 2 for  
simulation protocols).

PredPCA provides optimal representation and parameters for 
prediction. In the first experiment (Fig. 2), we trained a neural net-
work with MNIST handwritten digit images33 in ascending order 
and in the Fibonacci sequence, wherein only the last digit was pre-
sented; however, these sequences involve some additional stochas-
ticity (which corresponds to process noise zt) such that a digit was 
replaced by a random one and a monochrome inversion occurred 
with a small probability at each step (analogous to large noise that 
interferes with weak signal measurements: for example, movement 
artefacts in electroencephalogram recordings35). In both cases, 
PredPCA successfully extracted 10-dimensional features under-
lying the image sequences as they were relevant to predicting the 
sequences. The following ICA32 separated the extracted components 
into independent hidden states. Each of the ensuing encoder neu-
rons (that is, independent components, xt+1|t) selectively responded 
to one of the ten digits without being taught their labels, as we 
can see for the encoders trained with the ascending sequence in  
Fig. 2a (right).

Irrespective of the sequence types (ascending order and 
Fibonacci sequence), PredPCA and ICA precisely separated the dig-
its into ten clusters in 10 dimensions with an average categorization 

Table 2 | Definitions and analytical solutions of estimators

Estimator Definition Analytical solution
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⟨
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⟩
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⟩
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⟨
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⟩
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⟨
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⟩
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⟨
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⟩
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(
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⟩
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⟩
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q
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ψ + O
(

T−1/2)
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Ψ
⟨
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⟩

q

⟨
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⟩

−1

q
ΩψΨΩ
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ψ + O

(
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+ O (σψ )

Σs

⟨
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⟩

q Σs + O
(
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Σψ
1
2

(
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⟨

ψ t+1|t+1ψT
t|t

⟩

q
+

⟨

ψ t|tψT
t+1|t+1

⟩

q
Ψ−T

)

ΩψΣψΩ
T
ψ + O

(

T−1/2)
+ O (σψ )

Σx I Σx ≡ I

Σω Σs − AΣψAT
Σω + O

(

T−1/2)
+ O (σψ )

Σz Σx − BΣψBT
ΩxΣzΩ

T
x + O

(

T−1/2)
+ O (σx)

Nψ argmin
Nu

L Converge to Nψ when T > Tcψ
Nx Largest spectrum gap of Σψ Converge to Nx when T > Tcx and σx < σc

x

The external system is characterized by st = Aψt + ωt and xt+1 = Bψt + zt. Throughout the Article, a bold variable (for example, st+k|t) indicates the estimator of the corresponding italic variable (for example, 

st+k). Ps and Pψ are sets of the major eigenvectors of ΣPred
s  and Σψ, respectively. The full-rank square matrix Ωψ and orthogonal matrix Ωx are ambiguity factors. O (σx) = O

(√

Nx/Nψ

)

+ O
(

N−1/2
x

)

 and 

O (σψ ) = O
(

N−1/2
ψ

)

 are linearization errors, where σx = σψ = 0 for any linear system. Tc
x , T

c
ψ
< ∞ are finite large constants and σc

x > 0 is a small positive constant. Refer to Methods for further details.
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error of less than 2% (scored by false discovery rate; Fig. 2b). During 
this process, PredPCA ignored any within-class differences in the 
digit images that do not predict the next image (which correspond 
to observation noise ωt). Hence, PredPCA’s policy of dimensional-
ity reduction to minimize the prediction error distinguishes it from 
standard PCA28,29 and autoencoders10,11—because PCA and auto-
encoders minimize the reconstruction error for the current input 
st and thus preferentially extract the within-class differences in the 
digit images owing to their extra variances. Even when the standard 
PCA was applied to the past-to-current input sequence (that is, ϕt), 
it failed to separate the digits because the hidden representation of 
ϕt included more than 10-dimensional state space and thus the first 
ten major components of ϕt did not match the true hidden states 
xt. Although the categorization errors of TICA14, TAE13 and DMD15 
were smaller than those of PCA and an autoencoder, they still failed 
to categorize some digits. This is because the former methods use 
only a single step (that is, ϕt = st) to predict subsequent digit images 
(st+1). Moreover, even when using (st, st-1) or ϕt to predict (st+1, st) or 
ϕt+1, they failed to categorize digits, because the extracted features 
do not match the true hidden states (these results are similar to the 
PCA of ϕt). The performance of the SSM and hidden Markov model 
with 10-dimensional state spaces was also poor because their larger 
parameter estimation errors led them to a spurious solution or  
local minimum.

In addition to accurate source separation, PredPCA could pro-
vide the optimal system parameters for the prediction (Fig. 2c).  
These parameter estimators were computed simply by following 
the definitions in Table 2. The differences between the param-
eter estimators obtained by PredPCA and those obtained by 
supervised learning converged to zero as the number of training 
samples increased, as predicted theoretically (Methods section 
‘System parameter identification'). These results corroborated that 
PredPCA-based system parameter identification was applicable to 
systems involving non-Gaussian noise. Consequently, the outcomes 
of PredPCA could reliably identify the transition rules underly-
ing the ascending order (Extended Data Fig. 1a) and Fibonacci 
sequences (Extended Data Fig. 1b) in an unsupervised manner. 
In essence, we demonstrated that each encoder obtained using 
PredPCA corresponds to a digit, and the obtained state transition 
matrix represents the estimated dynamics of digit sequences, which 
can assign the meaning to these model parameters. These results 
indicate the interpretability of PredPCA as the obtained model can 
provide an explanation of the manner that the hidden dynamics 
generate the sensory input.

The above outcomes allowed PredPCA to predict subsequent 
digits reliably and accurately (Fig. 2d). Here, we see that although 
PredPCA did not observe the hidden states directly, its test predic-
tion error converged globally—with increasing training samples—to 
the lower bound of the test prediction error computed via super-
vised learning that explicitly used the true hidden states for training. 
This is as theoretically predicted by equation (7). Moreover, equa-
tion (7) successfully identified the optimal encoding dimensional-
ity that minimized the test prediction error as Nu = 10, which also 
matched the true hidden state dimensionality (Fig. 2d, inset). These 
matchings hold even in the absence of random replacement and/
or monochrome inversion of digit images (Extended Data Fig. 1c). 
Numerical observations indicate that PredPCA can reduce errors in 
categorization, system identification, and prediction as the number 
of past observations used for prediction (Kp) increases until reach-
ing its finite optimum (Extended Data Fig. 1d). In contrast, linear 
TAE and SSM (same as PredPCA with ϕt = st) failed to identify 
the system properties, and thus generated a larger prediction error 
(Extended Data Fig. 2).

In particular, the long-term prediction of subsequent digits 
highlights the virtue of PredPCA’s categorization and system iden-
tification accuracy—provided with a winner-takes-all operation, 

the outcomes of PredPCA could recursively predict the subse-
quent digits without categorization errors for more than 105 steps 
(Fig. 2e). These results were minimally influenced by the assumed 
transition mapping structures and training history (Extended Data 
Fig. 3a–c), and the optimal model structure could be determined 
through model selection based on the standard AIC (Extended 
Data Fig. 3d). In contrast, SSMs tended to fail the long-term pre-
diction depending on initial conditions and training history, even 
though they were provided with the winner-takes-all operation  
(Extended Data Fig. 3e).

PredPCA filters out observation noise and minimizes test pre-
diction error. Next, the noise reduction and prediction generaliza-
tion capabilities of PredPCA were examined using natural videos. 
We trained a neural network by using images of 3D objects rotating 
anti-clockwise36 as the input (Fig. 3a, furthest left). In short, the task 
was to predict the opposite side of test object images (200 objects) 
by observing only a half side of the images, based on the transi-
tion (that is, rotational) mapping learned from different training 
object images (up to 800 objects). Here, we used the optimal lin-
ear bases ϕt to maximize PredPCA’s generalization capability (see 
Supplementary Methods section 3 for the procedure). The ability 
of PredPCA was experimentally confirmed by its successful pre-
dictions of the 30°–150° rotated images of previously unseen test 
objects (Fig. 3a, middle row; see Supplementary Video 1 for pre-
dictions of 90° rotated images, where the right-hand-side images 
are the predictions of the corresponding ground truth images on  
the left-hand side).

In general, features extracted using PredPCA comprise categori-
cal features that represent what the input is as well as dynamical fea-
tures that express how it is moving. As the asymptotic linearization 
theorem implies that the obtained encoders xt+k|t are linear superpo-
sitions of hidden states, we define categorical features as the aver-
age of estimators, x̄t ≡

(

xt+30|t +…+ xt+150|t
)

/5, and dynamical 
features as the deviation from their average, Δxt+k|t ≡ xt+k|t − x̄t. 
Applying ICA to x̄t separated the categorical features into a sparse 
representation, each dimension of which expresses a feature of 
objects (Fig. 3b, top). Applying an additional PCA to the dynami-
cal features (for example, Δxt+90|t) provided the angle of 3D objects 
as the first principal component (PC1; Fig. 3c, left). Although the 
coordinate of the attractor changes depending on its category, 
this treatment makes it easier to interpret the dynamics of hidden 
states. We also observed the same property for xt+30|t, xt+60|t, xt+120|t  
and xt+150|t.

Notably, these prediction and feature extraction capabilities 
were largely retained even in the presence of an artificially added 
large (white Gaussian) observation noise whose variance had the 
same magnitude as the variance of original images, demonstrat-
ing the robustness of PredPCA’s outcomes (Fig. 3a,b, bottom, and  
Fig. 3c, right; see Supplementary Video 2 for predictions of 90° 
rotated images). The sampling fluctuation caused by the observa-
tion noise disturbed the prediction of minor components, and thus 
changed the optimal encoding dimensionality (Fig. 3d).

We confirmed an earlier decrease of the test prediction error for 
PredPCA relative to the naive autoregressive model as the number 
of training samples increases (Fig. 3e). PredPCA generated a smaller 
test prediction error relative to TICA, TAE, DMD and SSMs based 
on the Kalman or Bayesian filters (Fig. 3f). These results indicate 
that PredPCA could determine a plausible rule for rotating generic 
objects. Remarkably, owing to the convex optimization, features 
extracted using PredPCA are uniquely determined for any given 
training dataset (even if the true system is unknown). This contrasts 
with TAE and SSM, because their extracted features change depend-
ing on the initial conditions, order of supplying mini batches, or 
level of observation noise, even though they are trained with the 
same dataset (Extended Data Fig. 4).
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We note that we also trained PredPCA with an image dataset of 
rotating 3D human faces and confirmed that PredPCA can accu-
rately predict subsequent images and extract relevant features such 
as pan and tilt angles of face images in an unsupervised manner 
(Supplementary Fig. 2).

As a further application to more natural data, we lastly trained 
a neural network with natural scenes captured from a driving car37 
(Fig. 4a and Supplementary Video 3). Here, we aimed at demon-
strating the applicability of our simple, analytically solvable linear 
method to real-world video prediction and feature extraction tasks, 
rather than comparing the prediction accuracy of PredPCA with 
that of state-of-the-art video prediction methods exploiting engi-
neering wisdom. For predictions, we separated the videos into six 
groups of data based on the magnitude of change in the images per 
frame and trained six predictors separately with each group of data; 
subsequently, post hoc PCA was applied to the synthesized predicted 
input (see Supplementary Methods section 1 for further details). 

PredPCA could predict 0.5-seconds future images of previously 
unexperienced natural scenes with a certain accuracy (Fig. 4a).  
Moreover, PredPCA could extract brightness, the vertical and lat-
eral asymmetries, and lateral motion in the scenes underlying the 
driving car videos (Fig. 4b,c). For the feature extractions, the entire 
video was simply supplied to PredPCA without the six sub-groups; 
thus, the global convergence was theoretically guaranteed. We 
observed tight correspondences between features learned based on 
different finite training samples (Fig. 4b,c, insets), implying that 
PredPCA could extract features unique to the generative process 
that generated sensory data. In particular, the PC1 of dynamical 
features that encoded the lateral motion in the scenes (Fig. 4c) was 
relevant to predicting the steering of the car. The features extracted 
using PredPCA were retained even when using the data grouping 
(Extended Data Fig. 5a, b). Other major categorical and dynami-
cal features represent different categories of scenes (Extended Data 
Fig. 5c) and motions in different positions (Extended Data Fig. 5d),  
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Fig. 3 | PredPCA-based de-noising, hidden state extraction and subsequent input prediction of videos of rotating 3D objects. a, Snapshots of the 
prediction results. Latest input image (furthest left) and ground truth (top) and predicted images after 30°, 60°, 90°, 120° and 150° rotations, without 
(middle row) and with (bottom) artificially added observation noise. b, Images corresponding to 20-dimensional sparse representations ( x̄t) each 
expressing a categorical feature of objects. These images were obtained by applying ICA with super-Gaussian prior distribution to the first 20 principal 
components of PredPCA, averaged over different prediction points x̄t =

(

xt+30|t + …+ xt+150|t
)

/5 (see Methods section ‘Asymptotic linearization 
theorem' for the detail). These images visualize linear mappings from each independent component to the observation. c, Rotation of objects encoded in 
the first principal component (PC1) of the dynamical features of xt+90|t (that is, Δxt+90|t = xt+90|t − x̄t). Here, the neural activity predicted the angle of 
90°-rotated future images, indicating that when observing an asymmetric object (as opposed to a cylindrical object), the network was able to anticipate 
whether its image would be wider or narrower after a 90° rotation. Blue lines and shaded areas indicate the median and area between the 25th and 
75th percentiles over the dataset, whereas black lines show trajectories for an object that is shown at the bottom. d, Optimal encoding dimensionality 
increasing with training sample size, in the absence (blue) and presence (red) of the large observation noise. e, Comparison of test prediction error, 

defined by errork =
〈∣

∣gt+k −WTut+k|t
∣

∣

2〉
/
〈

|gt+k|
2〉, where gt = st − ωt indicates the observation-noise-free input. PredPCA (solid lines) show a smaller 

test prediction error and an earlier error convergence compared with the naive autoregressive model (dashed lines). Blue and red lines denote the error in 
the absence and presence of the large observation noise. f, Comparison of test prediction error between PredPCA, naive autoregressive model, TICA, TAE, 
DMD and SSMs based on the Kalman filter (KF) and the Bayesian filter (BF), when trained with 800 objects in the absence of noise. d−f are obtained with 
ten different realizations of training and test samples. The green bars in f indicate the minimum test prediction error among these ten different realizations. 
The shaded areas and error bars indicate the standard deviation. See Supplementary Methods sections 1 and 2 for further details.
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respectively. Remarkably, unlike conventional video prediction 
methods6, PredPCA could extract these relevant features in an 
unsupervised manner, without the use of labels or target signals 
for training.

In summary, using examples of objects rotating in 3D and natu-
ral scenes, we demonstrated that PredPCA can filter out observa-
tion noise and minimize test prediction error by extracting features 
relevant to generalizing predictions. Although the true generative 
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, was 0.648. Although 

unexpected events during 0.5 s were unpredictable and some predictions were inaccurate owing to the limited effective dimensionality of the input, the 
results indicate that PredPCA provides predictions that interpolate unseen future images and the latest input images, without using any label for training.  
b, Extraction of brightness and the vertical and lateral asymmetries in driving car videos as the PC1–PC3 of categorical features (that is, x̄t). Insets depict 
tight correspondences between features extracted using PredPCA, learned exclusively on the basis of the first and second half of training samples. For  
PC1−PC3, the correlations between them are larger than 0.9999. c, Extraction of lateral motion from driving car videos as the PC1 of dynamical features 
(that is, Δxt+3|t). The correlation between features learned based exclusively on the first and second half of training samples is 0.9962. In b and c, blue lines 
and shaded areas indicate the median and area between the 25th and 75th percentiles. Refer to Supplementary Methods section 1 for further details.
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process is unknown for these examples, these results indicate that 
the outcomes of PredPCA capture the plausible properties of natu-
ral data. These results highlight the prediction generalization and 
feature extraction capabilities of PredPCA as well as its wide appli-
cability to real-world data.

Discussion
Our proposed scheme, PredPCA, is thus shown to identify a concise 
representation that provides the global minimum of the test pre-
diction error, by first predicting subsequent observations and then 
performing post hoc PCA of the predicted inputs. This is essential 
for maximizing the prediction generalization capability, as well as 
for ensuring accurate and unbiased estimation of system properties, 
comprising hidden states, system parameters and dimensionalities. 
Our scheme is formally based on Akaike’s statistics19,27 and is consis-
tent with existing information-theoretical views of biological opti-
mizations, including maximum negentropy38, predictive coding2,3, 
predictive information39 and the free energy principle40—providing 
a normative, analytically solvable example of a neural network that 
maximizes information quality and generalization capability.

PredPCA offers an interpretable hidden state representation 
(Methods section ‘Asymptotic linearization theorem') that is pref-
erable for generalizing prediction, without using prior knowl-
edge about external systems. To this end, the global convergence 
guarantee or convex optimization of PredPCA (Methods sections 
‘Derivation of PredPCA' and ‘Test prediction error minimization') 
is essential, because the representation could otherwise change 
depending on the initial conditions, training history or level of 
observation noise, rendering such representation unreliable, and 
may overfit to a particular training dataset. PredPCA further guaran-
tees the asymptotic identification of the true system properties with 
a global convergence guarantee (Methods sections ‘Asymptotic lin-
earization theorem', ‘System parameter identification' and Table 2)  
when sensory data are generated from a class of canonical sys-
tems (Methods section ‘System'), provided with sufficient training 
samples T and sufficiently high-dimensional observations satisfy-
ing Ns ≫ Nx ≫ 1. This is remarkable because PredPCA can iden-
tify properties of canonical systems even with a limited number of 
training samples, up to a small range of errors that are inversely pro-
portional to the sample and system sizes, as empirically validated 
in Fig. 2 (and Extended Data Fig. 1 and Supplementary Fig. 1; see 
also ref. 34). These guarantees are crucial, particularly when feature 
extraction failures or misunderstanding of a system lead to cata-
strophic problems in subsequent applications, such as in automated 
driving or medical diagnosis. In general, finite but sufficiently large 
T, Ns/Nx, and Nx are required to ensure this asymptotic property—
because only under such conditions are the major principal compo-
nents of the de-noised input guaranteed to match the hidden states 
of the original nonlinear system34.

Unlike PredPCA, conventional (nonlinear) prediction strategies 
using autoencoders10,11, TAE13 or SSMs16–18 do not have such guaran-
tees and can fail to reliably provide accurate prediction and feature 
extraction depending on various conditions, as shown in Figs. 2 and 
3 and Methods section ‘Filtering out observation noise', because 
they have many spurious solutions. Having said this, if a learner has 
a sufficient amount of prior knowledge about the generative process 
that generates sensory data (for example, knowledge about underly-
ing physics), incorporating such knowledge into prediction can pro-
vide more interpretable and accurate predictions. Such knowledge 
may remove spurious solutions and make all solutions the global 
minimum. In other words, for these related methods, the outcomes 
of PredPCA are potentially of great importance in setting a plausible 
initial condition and an appropriate empirical prior, in the absence 
of prior knowledge.

It should be noted that if the number of training samples is 
sufficient and the magnitude of observation noise is sufficiently 

low, the prediction error of PredPCA may be larger than that of 
state-of-the-art prediction methods using deep neural networks4–6—
because the generalization error may be negligible under such a 
condition. The improvement in generalization capability obtained 
by omitting minor eigenmodes has been reported using deep neu-
ral networks41,42. This implies a potential extension of PredPCA to 
analytically solve the optimal representations for deep learning in a 
weakly nonlinear regime.

Although this work focuses on discrete-time systems, one may 
think of these systems as approximations of the physical reality in 
continuous time, where generative processes exhibit a hierarchy 
of timescales. From this perspective, the definitions of signal and 
observation noise will change depending on the time bin size of 
observations. Thus, it is crucial for accurate predictions to deter-
mine the time bin size to ensure that the timescale of observations 
matches the timescale of generative processes.

PredPCA-type learning can be implemented in biological neuro-
nal networks and biologically inspired neuromorphic hardware43,44. 
Neurons in these systems must update their synapses to perform pre-
dictions under physiological or physical constraints—in particular, it 
is difficult for them to access non-local information, such as the syn-
aptic weights of other neurons45. This fact limits biologically plausible 
learning to a local rule that updates synapses based on and only on 
pre- and post-synaptic neural activities and additional directly acces-
sible signals. Conventional PCA and ICA algorithms are non-local, 
but we have previously developed a local learning algorithm that per-
forms both PCA and ICA46,47. This algorithm can make PredPCA a 
local learning rule and guarantees its biological plausibility. Hence, 
we can speculate that PredPCA-type learning underlies the general-
ization capability of biological organisms and the self-organization of 
internal models48. Some neuronal substrate, such as neuromodula-
tors49,50, may encode the test prediction error expectation for mediat-
ing structural learning or model selection in the brain.

For further discussion, please refer to the Supplementary 
Discussion.

In summary, PredPCA has proved to be an analytically solvable 
unsupervised dimensionality reduction scheme capable of extract-
ing the most informative components for generalizing prediction. 
By effectively filtering out unpredictable noise, PredPCA can reli-
ably identify plausible system properties, with a global convergence 
guarantee, and can globally minimize the test prediction error. 
Although this paper focuses on the autoregression, PredPCA can 
minimize the generalization error for a class of regression tasks, 
indicating its potential applicability to various real-world applica-
tions. As a mathematically proved optimal generalization strategy, 
our scheme is potentially useful for understanding biological gen-
eralization mechanisms and for creating reliable and explainable 
artificial general intelligence.

Methods
In what follows, we mathematically express the benefits of PredPCA. Methods 
sections ‘System' and ‘Derivation of PredPCA' formally define the system and 
PredPCA. Methods sections ‘Filtering out observation noise' and ‘Test prediction 
error minimization' prove that PredPCA inherits preferable properties of both 
the standard PCA and autoregressive models, and outperforms naive PCA and 
autoregressive models in terms of robustness to noise and generalization of 
prediction. Methods sections ‘Asymptotic linearization theorem' and ‘System 
parameter identification' demonstrate that PredPCA identifies the optimal hidden 
state estimator and the true system parameters of a class of canonical systems with 
a global convergence guarantee, owing to the asymptotic property of linear neural 
networks with high-dimensional inputs34. Supplementary Methods sections 1 and 2 
provide the simulation protocols.

System. We suppose that a system in the external milieu is expressed as xt+1 = ft + zt 
and st = gt + ωt, where ft ≡ f(xt, xt-1,…) and gt ≡ g(xt) are nonlinear functions of 
xt, while zt and ωt are mutually independent white noises characterized with 
zero means and covariances Σz and Σω. We assume that the system is in a steady 
state. To generate predictable dynamics, Σz is assumed to be smaller than Σx in 
magnitude; whereas we typically consider a large Σω. Without loss of generality, we 
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can suppose that the steady state of xt follows a distribution with zero mean and the 
identity covariance Σx ≡ I. For analysis, we consider a family of functions ft ≡ Bψt 
and gt ≡ Aψt spanned by nonlinear basis functions ψ t ≡ ψ (xt) ∈ R

Nψ , where Nψ 
denotes the number of linearly independent bases, B ∈ R

Nx×Nψ  is a full-row-rank 
transition matrix, and A ∈ R

Ns×Nψ  is a full-column-rank mapping matrix from the 
bases to the sensory input. Thus, equation (1) becomes

st = Aψ t + ωt (8)

and equation (2) becomes

xt+1 = Bψ t + zt (9)

As the dimensionality of bases increases, each element of f(xt) and g(xt) 
asymptotically expresses an arbitrary nonlinear mapping if A and B are suitably 
selected (refer to universality). We assume Nx ≤ Nψ ≤ Ns such that the system 
dynamics are produced by hidden states that are lower-dimensional than the 
observations. Although this paper supposes ψt = ψ(xt), the same analysis can be 
applied to a system comprising ψt = ψ(xt, xt-1,…) by redefining (xt, xt-1,…) and (st, st-

1,…) as new xt and st, respectively. Table 1 presents the glossary of expressions.

Derivation of PredPCA. PredPCA aims to minimize the multistep prediction 
error for predicting a 1-to-Kf-step future of the aforementioned system by 
optimizing synaptic weight matrices using and only using the current and past 
observations st, st−1, …, st−Kp+1, where Kf and Kp are imposed by the problem 
setup. Hidden states and bases (xt, ψt), system parameters (A, B, Σx, Σψ, Σz, Σω), and 
the numbers of hidden state and basis dimensions (Nx, Nψ) are unknown  
to a learner.

The error for predicting the k-step future is defined by εt+k|t ≡ st+k − WTVkϕt, 

where ϕt ≡
(

sTt , sTt−1, …, sTt−Kp+1

)T
∈ R

Nϕ is a vector of observations, 
W ∈ R

Nu×Ns is the transpose of the decoding synaptic weight matrix, and 
Vk ∈ R

Nu×Nϕ is the kth encoding synaptic weight matrix. Although general 
nonlinear bases can be used as ϕt, a simple vector of observations serves the 
purpose of this paper. We will show below that the prediction and system 
identification using these linear bases are accurate when the dimensionality of 
inputs are sufficiently large. Minimizing εt+k|t can be viewed as a generalization 
of the standard PCA29 that minimizes the reconstruction error of the current 
observation (that is, ϵPCAt ≡ st − WTWst).

Formally, the cost function of PredPCA for multistep predictions is defined by

L ≡
1
2

Kf
∑

k=1

〈

∣

∣ϵt+k|t
∣

∣

2
〉

q
, (10)

where ⟨•⟩q ≡
1
T
∑T

t=1 • is the expectation over the empirical distribution q. 
Solving the fixed point of the above cost function L with respect to Vk yields the 
optimal estimator. From

∂L
∂Vk

= −W
⟨

ϵt+k|tϕ
T
t

⟩

q
= −W

⟨(

st+k − WTVkϕt
)

ϕ
T
t

⟩

q
= O, (11)

under an assumption of WWT = I (which is preserved by equation (13) below), the 
optimal Vk is found to be

Vk = W
⟨

st+kϕ
T
t

⟩

q

⟨

ϕtϕ
T
t

⟩

−1

q
(12)

We define the maximum likelihood estimator of st+k as st+k|t ≡ Qkϕt, where 
Qk ≡

⟨

st+kϕ
T
t
⟩

q
⟨

ϕtϕ
T
t
⟩

−1
q  is the optimal (maximum likelihood) matrix estimator. 

Throughout the Article, a bold variable (for example, st+k|t) indicates the estimator 
of the corresponding italic variable (for example, st+k). The kth encoder ut+k|t is thus 
defined by ut+k|t ≡ Wst+k|t. The optimal W is determined by the gradient descent  
on L:

Ẇ ∝ −
∂L
∂W

=

Kf
∑

k=1

⟨

ut+k|t

(

st+k − WTut+k|t

)T
⟩

q
(13)

Equation (13) is similar to Oja’s subspace rule for PCA28 except that st+k|t is 
used instead of st+k to define ut+k|t. In this sense, PredPCA conducts post hoc 
dimensionality reduction (PCA) of the predicted input. The update by  
equation (13) maintains W as an orthogonal matrix (that is, WWT = I) throughout 
the learning.

The above PredPCA solution can also be obtained by eigenvalue 
decomposition. When WWT = I, the cost function is transformed as 

L =
1
2

Kf
∑

k=1

〈

∣

∣st+k − WTWst+k|t
∣

∣

2
〉

q
=

Kf
2

(

tr [Σs] − tr
[

WΣPred
s WT

])

, where 

Σs ≡
⟨

stsTt
⟩

q and ΣPred
s ≡

1
Kf

Kf
∑

k=1

⟨

st+k|tsTt+k|t

⟩

q
 are the actual and predicted input 

covariances calculated based on the empirical distribution, respectively. Thus, the 

minimization of L is achieved by maximizing the second term under the constraint 
of WWT = I (note that this constraint is automatically satisfied by minimizing L). 
Hence, the optimal W is provided as the transpose of the major eigenvectors of 
ΣPred
s . This solution is unique up to the multiplication of an Nu × Nu orthogonal 

matrix from the left. The global convergence and absence of spurious solutions 
are guaranteed even when W is computed by equation (13) because of the global 
convergence property of Oja’s subspace rule for PCA30. In short, PredPCA is a 
convex optimization and thus it can reliably identify the optimal synaptic weight 
matrices W and V1, …, VKf  for predictions, which provides the global minimum  
of the cost function L.

Filtering out observation noise. Here, we compare the components extracted 
using PredPCA and the standard PCA28,29. We show that only PredPCA can remove 
observation noise and accurately estimate the observation matrix A as training 
sample size T increases.

We introduce the expectation over true distribution p (ϕt, st+1, …, st+Kf ), 
denoted by ⟨•⟩ ≡

∫

• p (ϕt, st+1, …, st+Kf ) dϕtdst+1 · · · dst+Kf . The empirical 
distribution approaches this true distribution in the large training sample  
size limit: p (ϕt, st+1, …, st+Kf ) = plim

T→∞

q (ϕt, st+1, …, st+Kf )
. Throughout 

the manuscript, we suppose 〈st〉 = 0, 〈ψt〉 = 0, and 〈xt〉 = 0 for the sake of 
simplicity. The true covariance matrix of some variable ξt is denoted by 
Σξ ≡ cov [ξt] ≡

⟨

ξtξ
T
t
⟩

− ⟨ξt⟩
⟨

ξTt
⟩

. Here, any estimator or statistic θ under 
consideration, calculated based on the empirical distribution, can be decomposed 
into its true value θ and its generalization error δθ ≡ θ − θ, where δθ is in the T−1/2 
order (see Supplementary Methods section 4 for the conditions and the proof). 
Below, we will decompose θ into θ and δθ and then solve θ analytically.

The standard PCA conducts the eigenvalue decomposition of the actual input 
covariance, calculated based on the empirical distribution: Σs ≡

⟨

stsTt
⟩

q. The 
convergence to some unknown underlying distribution in the large-sample limit is 
a known property of PCA51. From equation (8), the covariance is decomposed as 
Σs = Σs + O

(

T−1/2)
= AΣψA + Σω + O

(

T−1/2) owing to the independence 
of ψt and ωt. As the observation noise covariance Σω is involved in Σs, the major 
eigenvectors of Σs that PCA extracts are biased toward the directions of the noise’s 
major eigenvectors. This bias is a common issue of autoencoding approaches10,11 
that renders the identification of the true system parameters difficult.

In contrast with the standard PCA, PredPCA conducts the eigenvalue 
decomposition of the predicted input covariance: ΣPred

s ≡
1
Kf

Kf
∑

k=1

⟨

st+k|tsTt+k|t

⟩

q
. 

Owing to this construction, the identification of system parameters (A, B, Σx, 
Σψ, Σω, Σz) based on PredPCA is not biased by the observation noise. From the 
independence between ωt+k and ϕt, st+k|t = A

⟨

ψ t+kϕ
T
t
⟩

Σ
−1
ϕ

ϕt + O
(

T−1/2) 
holds. Thus, we obtain

ΣPred
s = AΣPred

ψ AT
+ O

(

T−

1
2

)

, (14)

where ΣPred
ψ ≡

1
Kf

Kf
∑

k=1

⟨

ψ t+kϕ
T
t
⟩

Σ
−1
ϕ

⟨

ϕtψ
T
t+k

⟩

 is the predicted hidden 

basis covariance, calculated based on the true distribution. Applying the 
eigenvalue decomposition to ΣPred

s  provides the set of major eigenvectors 
Ps ≡

(

P
·1, …, P

·Nψ

)

∈ R
Ns×Nψ  that correspond to asymptotically non-zero 

eigenvalues of the predicted input covariance. Because of the uniqueness of the 
eigenvalue decomposition, Ps converges to matrix A as the number of training 
samples increases—up to the multiplication of a full-rank matrix Ωψ ∈ R

Nψ ×Nψ  
from the right-hand side. Hence, we refer to Ps as the estimator of A:

A ≡ Ps

= Ps + O

(

T−

1
2

)

= AΩ−1
ψ + O

(

T−

1
2

)

(15)

Here, we introduced the inverse of Ωψ (instead of Ωψ itself) for 
our convenience. Note that Ps is the set of major eigenvectors of the 
generalization-error-free predicted input covariance ΣPred

s ≡ AΣPred
ψ AT. In 

short, PredPCA can identify matrix A with asymptotically zero error without 
directly observing ψt for large T. Notably, the number of basis dimensions Nψ is 
also identifiable by counting the number of asymptotically non-zero eigenvalues 
of ΣPred

s , which converges to the true Nψ of canonical systems for a large training 
sample size (see Methods section ‘Test prediction error minimization' for the 
formal definition of the estimator Nψ using the test prediction error).

In addition, multiplying PT
s  by the predicted input yields the predicted basis 

estimator:

ψ t+k|t ≡ PT
s st+k|t

= Ωψ

⟨

ψ t+kϕ
T
t
⟩

Σ
−1
ϕ

ϕt + O

(

T−

1
2

) (16)

The last equality holds from the orthogonality of eigenvectors, that is, 
PTs A = PTs PsΩψ = Ωψ , and the independence between ωt+k and ϕt. Indeed, ut+k|t 
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with optimized synaptic weight matrices is equivalent to ψt+k|t when Nu = Nψ. In 
short, PredPCA can provide the maximum likelihood estimator of the hidden bases 
without directly observing ψt+k —up to the multiplication of the full-rank ambiguity 
factor Ωψ from the left-hand side. This ambiguity factor is safely absorbed into the 
definition of ψt, without changing the system dynamics, by applying the following 
transformations: Ωψψt → ψt, Ps = AΩ−1

ψ → A, and BΩ−1
ψ → B. Therefore, the 

estimated hidden dynamics are formally homologous to the original dynamics.
In terms of conceptual innovations of PredPCA, our analyses reveal that this 

scheme can identify the true hidden states, parameters, and dimensionalities of 
a class of canonical systems (see below). In particular, the multi-time-step bases 
function ϕt is an essential difference between PredPCA and related methods such 
as TICA14, TAE13 and DMD15,52. Empirical observations highlight the importance 
of filtering out observation noise to reliably perform system identification (Fig. 2, 
and Extended Data Figs. 1 and 2). Indeed, features extracted from TICA or DMD 
are expressed as complex numbers, which do not match the true hidden states. 
Although TAE can identify matrix A and the extracted features are denoted in real 
numbers, it still fails to identify true hidden states and other parameters because it 
fails to filter out large observation noise (Fig. 2b and Extended Data Fig. 2a).

Furthermore, we presented an algorithm to update synaptic weights 
(equation (5)), which makes it easier to design a computational architecture for 
PredPCA. As discussed above, it is fairly straightforward to implement PredPCA 
in neuromorphic hardware through a previously developed local learning 
algorithm46,47,53—wherein a previous work has implemented the local algorithm 
using resistive random-access memories44. It should be emphasized that PredPCA 
is suitable for neuromorphic hardware relative to TCIA, TAE and DMD because 
the computations for inverse matrices, complex numbers, and eigenvalue 
decomposition of non-symmetric matrices are intractable in neural networks. For 
further discussion, please refer to Supplementary Discussion.

Test prediction error minimization. A learner needs to predict the future 
consequences of unseen input data based on learning with a limited number of 
training samples. Here, we analytically solve the expectation of the PredPCA’s test 
prediction error as a function of the training samples (T), encoding dimensions (Ns), 
and number of past observations used for prediction (Nϕ = KpNs). Its minimization 
enables a learner to maximize the generalization ability by optimizing free parameters 
in the network without knowing the true distribution that generates test samples.

PredPCA’s test prediction error is defined as the squared error over the true 
distribution p. Meanwhile, the learning is based on the empirical distribution q. 
Thus, the test error is given as a functional of q:

Ltest [q] ≡
1
2

Kf
∑

k=1

〈

∣

∣ϵt+k|t [q]
∣

∣

2
〉

(17)

Here, the prediction error (which is also a functional of q) is given  
as ϵt+k|t [q] ≡ st+k − PsPT

s st+k|t using the major eigenvectors of  
the predicted input covariance Ps ≡ (P

·1, …, P
·Nu ) ∈ R

Ns×Nu and the 
maximum likelihood estimator st+k|t =

⟨

st+kϕ
T
t
⟩

q
⟨

ϕtϕ
T
t
⟩

−1
q ϕt computed 

based on the empirical distribution q. The generalization error of major 
eigenvectors Ps is negligible up to the leading order (see Supplementary Methods 
section 5 for details). The q-dependent factor in st+k|t is computed as 
⟨

st+kϕ
T
t
⟩

q
⟨

ϕtϕ
T
t
⟩

−1
q =

(

⟨

st+kϕ
T
t
⟩

+ δ
⟨

st+kϕ
T
t
⟩

q

)(

Σϕ + δ
⟨

ϕtϕ
T
t
⟩

q

)

−1

= Qk + δ
⟨(

st+k − Qkϕt
)

ϕT
t
⟩

q Σ
−1
ϕ

 up to the leading 
order, using the optimal mapping Qk ≡

⟨

st+kϕ
T
t
⟩

Σ
−1
ϕ

 (note 
that δ〈∙〉q ≡ 〈∙〉q − 〈∙〉). Thus, the prediction error becomes 
ϵt+k|t [q] = st+k − PsPTs Qkϕt − PsPTs δ

⟨(

st+k − Qkϕt
)

ϕT
t
⟩

q Σ
−1
ϕ

ϕt, 
where Ps ≡ (P

·1, …, P
·Nu ) ∈ R

Ns×Nu denotes the major eigenvectors of the 
generalization-error-free predicted input covariance ΣPred

s . Then, we define the 
expectation of Ltest[q] over different empirical distributions q, given by

L ≡ E{q} [Ltest [q]] (18)

Here, E{q}[⋅] means the expectation over different empirical distributions. The 
expectation over different q is equivalent to the expectation over p for a linear term 
that involves a single δ〈∙〉q factor. Hence, E{q}

[

δ
⟨(

st+k − Qkϕt
)

ϕT
t
⟩

q

]

= O. 

In contrast, a term that comprises the square of δ〈∙〉q yields the positive variance 
through the interaction of the two factors, which is computed 
as E

{q}

[

δ
⟨(

st+k − Qkϕt
)

ϕT
t
⟩

q Σ
−1
ϕ

δ
⟨(

st+k − Qkϕt
)

ϕT
t
⟩T
q

]

=
Nϕ

T
(

Σs − QkΣϕQT
k
)

. Therefore, we find

L
︸︷︷︸

test error expectation

=
Kf
2

(

tr [Σs] − tr
[

PTs Σ
Pred
s Ps

])

︸ ︷︷ ︸

training error

+
KfNϕ

2T
tr
[

PTs
(

Σs − Σ
Pred
s

)

Ps
]

+ O

(

T−

3
2

)

︸ ︷︷ ︸

generalization error

(19)

See Supplementary Methods section 5 for the detailed derivation. This 
is viewed as a variant of AIC19 and NIC20. For practical use, covariances and 
eigenvectors in equation (19) are replaced with their estimators: Σs → Σs, 
ΣPred
s → ΣPred

s , and Ps → Ps, where L does not change by these replacements in 
the leading order. Because tr

[

PTs
(

Σs − Σ
Pred
s

)

Ps
]

> 0, the generalization error 

monotonically increases with the dimensionality of the encoders Nu. Meanwhile, 
the reduction of the training prediction error becomes small as Nu increases, and 
it reaches zero for Nu > Nψ due to zero eigenvalues of ΣPred

s . Hence, the optimal Nu 
that minimizes L is less than Ns.

The optimal encoding dimensionality that minimizes L is comparable to the 
effective dimensionality of true hidden basis dynamics of canonical systems for 
large T. Thus, Nψ ≡ argminNu

L provides the estimator of the true hidden basis 
dimensionality. In particular, Nψ = Nψ holds when T is larger than a large 
finite constant Tc

ψ ≡ Nϕtr
[

Σs − Σ
Pred
s

]

/ (Λs)Nψ Nψ
, where (Λs)Nψ Nψ

 is the Nψth 
(that is, the smallest non-zero) eigenvalue of ΣPred

s . In contrast, equation (19) 
with Nu = Ns provides the test prediction error of an autoregressive (AR) model 
that does not consider hidden states: LAR =

Kf
2

(

1 +
Nϕ

T

)

tr
[

Σs − Σ
Pred
s

]

. 
Because some components of Σω are generally perpendicular to Ps, 
tr
[

PTs
(

Σs − Σ
Pred
s

)

Ps
]

< tr
[

Σs − Σ
Pred
s

]

 for Nu < Ns. This means that the test 

prediction error of PredPCA with optimal Nu is smaller than that of autoregressive 
models. Hereafter, we suppose Nu = Nψ = Nψ.

Asymptotic linearization theorem. The asymptotic linearization theorem34 
was originally introduced to guarantee accurate extraction of independently 
and identically distributed hidden sources from its high-dimensional nonlinear 
transformations. In this Article, we use this theorem to prove that the true hidden 
state xt ∈ R

Nx is accurately estimated from its unknown nonlinear transformation 
ψ (xt) ∈ R

Nψ  with asymptotically zero element-wise error as Nx and Nψ/Nx (and 
T) diverge. In this section, we suppose that ψ(xt) is expressed in a specific but 
generic form of two-layered structure, ψ(xt) = Cρ(Rxt + r). Here, the elements of 
R ∈ R

Nψ ×Nx and r ∈ R
Nψ  are fixed Gaussian random variables independently 

drawn from N [0, 1/Nx]; C ∈ R
Nψ ×Nψ  is a matrix whose elements are, on  

average, on the order of N−1/2
ψ ; and ρ (·) : R �→ R is an odd nonlinear function, 

where the correlation between ρ(ξ) and a unit Gaussian variable ξ sampled  
from p(ξ) ≡ N [0, 1] is not close to zero. When Nψ is large, each element  
of ψ(xt) can represent an arbitrary nonlinear mapping of xt by adjusting C  
(refer to universality)54–57.

The assumption behind the theorem is as follows: (1) the elements of hidden 
states xt are not strongly dependent on each other (where zero mean and identity 
covariance matrix are supposed without loss of generality), in the sense that the 
average of higher-order correlations of the elements of xt asymptotically vanishes 
for large Nx with less than the order of 1; and that (2) the matrix components of 
C that are parallel to R are not too small compared to the other components (that 
is, the mapping is not very close to a singular mapping)—namely, the ratio of the 
minimum eigenvalue of RTCTCR to the maximum eigenvalue of CCT is assumed to 
be much greater than 1. We note that RTR = O (Nψ /Nx) is much greater than 1, 
so the condition (2) is easily satisfied when singular values of C are of order 1. The 
asymptotic linearization theorem states that under these two conditions, covariance 
Σψ has a clear spectrum gap that separates major and minor components, where the 
major and minor components correspond to linear and nonlinear transformations 
of the true hidden states, respectively.

Let P ∈ R
Nψ ×Nx be the set of the first to Nxth major eigenvectors  

of Σψ, and let Λ ∈ R
Nx×Nx be the diagonal matrix of the corresponding 

eigenvalues. The asymptotic linearization theorem proved that applying  
PCA to ψ(xt) provides accurate estimation of xt up to the multiplication of 
a fixed orthogonal matrix Ω; that is, Λ−1/2PTψ(xt) = Ωxt + O (σx). Here, 

σx =

√

(

ρ2/ρ′

2
− 1

)

(1 + λ)Nx/Nψ + ρ′′′

2/
(

2ρ′

2Nx
)

 is the standard 

deviation of the linearization error, where ρ2 ≡

∫

ρ2
(ξ) p (ξ) dξ, 

ρ′ ≡
∫ dρ(ξ)

dξ
p (ξ) dξ, and ρ′′′ ≡

∫ d3 ρ(ξ)

dξ3 p (ξ) dξ are statistics of the nonlinear 
function ρ over unit Gaussian variable ξ, and λ is an order-one constant 
determined by the characteristics of C. The linearization error monotonically 
decreases as the system size increases (that is, when Nψ/Nx and Nx diverge)—
asymptotically achieving the zero-element-wise-error hidden state estimation in 
the large system size limit. Please refer to ref. 34 for further details.

This theorem can be applied to the estimator of ψ(xt). Let Pψ ∈ R
Nψ ×Nx be the 

major eigenvectors of Σψ (see equation (23) below for its definition and analytical 
solution), and Λψ ∈ R

Nx×Nx be the corresponding eigenvalues. The hidden state 
estimator is given as

xt+k|t ≡ Λ
−

1
2

ψ PT
ψ ψ t+k|t

= Λ
−

1
2

ψ PTψΩψ

⟨

ψ t+kϕt
⟩

Σ
−1
ϕ

ϕt + O

(

T−

1
2

)

(20)

From the asymptotic linearization theorem, 
Λ

−1/2
ψ PTψΩψ ψ t+k = Ωxxt+k + O (σx) holds, where Ωx ∈ R

Nx×Nx is a fixed 
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orthogonal matrix. Here, we treated Ωψψt+k as a nonlinear function of xt+k and 
applied the theorem. Thus, equation (20) is solved analytically as

xt+k|t = Ωx
⟨

xt+kϕt
⟩

Σ
−1
ϕ

ϕt + O

(

T−

1
2

)

+ O (σx) (21)

This result shows that the maximum likelihood estimator of xt+k based on ϕt, 
⟨

xt+kϕt
⟩

Σ
−1
ϕ

ϕt, is available (up to the ambiguity factor Ωx, and the order T−1/2 
and σx small error terms), despite the fact that PredPCA is unsupervised learning 
that does not use any explicit data of xt+k for training. Similar to Ωψ, the ambiguity 
of Ωx can be absorbed into the definition of xt, without changing any system 
dynamics, by applying the following transformations: Ωxxt → xt, ΩxB → B, Ωxzt → 
zt, and RΩ−1

x → R. Notably, the number of state dimensions Nx is also identifiable 
by defining the estimator Nx as the largest spectrum gap of Σψ, which is guaranteed 
to converge to true Nx when σx is smaller than a small positive constant σc

x and T is 
larger than a large finite constant Tc

x.
It is well known that conventional nonlinear blind source separation 

approaches using nonlinear neural networks (for example, nonlinear ICA) do not 
guarantee the identification of true hidden sources under the general nonlinear 
blind source separation setup58,59. In contrast, it is remarkable that the asymptotic 
linearization theorem mathematically guarantees the achievability of the nonlinear 
blind source separation when Nψ ≫ Nx ≫ 1 (ref. 34).

System parameter identification. We demonstrated above that PredPCA can 
identify the true observation matrix A. Here, we show that it can also identify other 
system parameters B, Σψ, Σx, Σω and Σz asymptotically—if the assumptions of the 
asymptotic linearization theorem are met and the number of training samples is 
large.

These parameter identifications are based on the linearized transition mapping 
from ψt to ψt+1, denoted by Ψ; thus, we first compute the estimator of Ψ. We 
decompose ψt+1 as ψ t+1 = Ψψ t + Δψ t+1|t + O (zt), where Ψ =

⟨

ψ t+1ψT
t
⟩

Σ
−1
ψ  

is the optimal basis transition matrix, Δψt+1|t is the linearization error that is 
perpendicular to both ψt and zt, and O (zt) is a term related to small noise zt. This 
Ψ can be viewed as a finite basis size version of the Koopman operator52,60. The 
basis estimator based on the current input is defined as ψ t|t ≡ PT

s st and  
computed as ψ t|t = Ωψ ψ t + PTs ωt + O

(

T−1/2). Using this, we have 
⟨

ψ t+k|t+kψT
t|t

⟩

q
=

⟨

(

Ωψ ψ t+k + PTs ωt+k
) (

Ωψ ψ t + PTs ωt
)T
⟩

+ O
(

T−1/2) 

= Ωψ

⟨

ψ t+kψT
t
⟩

Ω
T
ψ + O

(

T−1/2)as the observation noise is white 
and independent of ψt and ψt+k. In particular, 

⟨

ψ t+1ψT
t
⟩

= ΨΣψ  and 
⟨

ψ t+2ψT
t
⟩

= Ψ
2
Σψ +

⟨

Δψ t+2|t+1ψT
t

⟩

 hold. Thus, we obtain the following 
estimator of the basis transition matrix:

Ψ ≡

⟨

ψ t+2|t+2ψT
t|t

⟩

q

⟨

ψ t+1|t+1ψT
t|t

⟩

−1

q

= ΩψΨΩ
−1
ψ + Ωψ

⟨

Δψ t+2|t+1ψT
t

⟩

Σ
−1
ψ Ψ

−1
Ω

−1
ψ + O

(

T−

1
2

)

= ΩψΨΩ
−1
ψ + O

(

T−

1
2

)

+ O (σψ )

(22)

This estimator converges to the optimal Ψ up to the ambiguity of Ωψ for large 
T and Nψ. The variance of the linearization error term O (σψ ) is of the same order 
as the variance of nonlinearly transformed components of xt that are involved in ψt; 
thus, using the asymptotic linearization theorem34, we compute the variance of 

the nonlinear components and obtain σψ =

√

(

ρ2 − ρ′2
)

/Nψ  as the order 

(see Supplementary Methods section 6 for further details).
Next, we compute the covariance matrices of hidden bases  

and observation noise. By multiplying the inverse of Ψ with 
⟨

ψ t+1|t+1ψT
t|t

⟩

q
= ΩψΨΣψΩ

T
ψ + O

(

T−1/2), we find the hidden basis 
covariance estimator (symmetrized version) as

Σψ ≡
1
2

(

Ψ−1
⟨

ψ t+1|t+1ψT
t|t

⟩

q
+

⟨

ψ t|tψT
t+1|t+1

⟩

q
Ψ−T

)

= ΩψΣψΩ
T
ψ + O

(

T−

1
2

)

+ O (σψ )

(23)

See Supplementary Methods section 6 for the order of the linearization error 
term. Using this Σψ, the observation noise covariance estimator is given as

Σω ≡ Σs − AΣψAT

= Σs − AΣψAT
+ O

(

T−

1
2

)

+ O (σψ )

= Σω + O

(

T−

1
2

)

+ O (σψ )

(24)

Finally, we estimate the state transition matrix and covariance matrices of 
hidden states and process noise. From equation (9) and the independence between 

zt+2 and ϕt, 
⟨

xt+2ϕT
t
⟩

= B
⟨

ψ t+1ϕT
t
⟩

 holds. Thus, equation (21) for k = 2 becomes 
xt+2|t =

(

ΩxBΩ−1
ψ

)

Ωψ

⟨

ψ t+1ϕt
⟩

Σ
−1
ϕ

ϕt + O
(

T−1/2)
+ O (σx). Hence, using 

equation (16), we find the following estimator of the transition matrix:

B ≡

⟨

xt+2|tψT
t+1|t

⟩

q

⟨

ψ t+1|tψT
t+1|t

⟩

−1

q

= ΩxBΩ−1
ψ + O

(

T−

1
2

)

+ O (σx)

(25)

The hidden state covariance estimator is given by Σx ≡ Σx ≡ I as we defined 
Σx so. Thus, as equation (9) yields Σx = BΣψBT + Σz, the process noise covariance 
estimator is given by

Σz ≡ Σx − BΣψBT

= ΩxΣzΩ
T
x + O

(

T−

1
2

)

+ O (σx)
(26)

In summary, PredPCA could identify the true system parameters A, B, Ψ, 
Σψ, Σx, Σω and Σz with a global convergence guarantee as the system and training 
sample sizes increase, using noisy observations only—up to the full-rank linear 
transformations (Ωψ, Ωx) that do not change the system dynamics. When zt and ωt 
are white Gaussian noises, these parameters are sufficient to identify the canonical 
system. The aforementioned analyses hold true even when zt and ωt are white 
non-Gaussian noises, although in this case, unsupervised identification of the 
third- or higher-order moments of zt and ωt has not yet been established. The 
zero-element-wise-error identification of these parameters will be asymptotically 
achieved when Nψ/Nx, Nx and T diverge. This global convergence guarantee is 
an advantage of PredPCA compared with conventional system identification 
approaches18,61. If ψ(xt) is a linear function of xt, the true system becomes a linear 
system and thus provides σx = σψ = 0; hence, PredPCA is guaranteed to identify 
the true system parameters with zero error as the increasing training samples, 
when Nx ≤ Ns. Table 2 summarizes the definitions and analytical solutions of these 
estimators. Every estimator can be computed by following the definition, where its 
analytical solution and accuracy have been proved theoretically.

The identification of system properties using PredPCA was empirically 
demonstrated with the example of handwritten digit images (Fig. 2, Extended Data 
Fig. 1 and Supplementary Fig. 1). Although it is difficult to prove what the true 
generative process is for rotating 3D objects (Fig. 3 and Supplementary Fig. 2)  
or natural scenes (Fig. 4 and Extended Data Fig. 5), empirical observations 
suggest that PredPCA can extract features relevant to generalized predictions. 
At least, PredPCA was able to identify the angles of rotating objects (Fig. 3c and 
Supplementary Fig. 2) and lateral motion in natural scenes (Fig. 4c and Extended 
Data Fig. 5b), indicating the identification of a part of their generative processes. 
These observations imply that the outcomes of PredPCA capture the plausible 
properties of natural data.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Image data used in this work are available in the MNIST dataset33 (http://yann.
lecun.com/exdb/mnist/index.html, for Fig. 2), the ALOI dataset36 (http://aloi.
science.uva.nl, for Fig. 3), and the BDD100K dataset37 (https://bdd-data.berkeley.
edu, for Fig. 4). Figures 2–4 are generated by applying our scripts (see below) to 
these image data.

Code availability
MATLAB scripts used in this work are available at https://github.com/
takuyaisomura/predpca or https://doi.org/10.5281/zenodo.4362249. The scripts are 
covered under the GNU General Public License v3.0.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Supplementary results of PredPCA with handwritten digit images. a, Transition mapping estimated using PredPCA B ∈ R
10×10 

accurately matches the true transition mapping B ∈ R
10×10 that generates the ascending order sequence. Elements of xt+1|t are permuted and sign-flipped 

for visualization purpose. b, This is also the case for the nonlinear dynamics. The estimated mapping from xt|t-1 ⊗ xt-1|t-2 to xt+1|t, B̃ ∈ R
10×100, was 

obtained using the outcomes of PredPCA, which accurately matches the true mapping of the Fibonacci sequence B̃ ∈ R
10×100. Here, ⊗ indicates the 

Kronecker product. These results indicate that PredPCA offers the identification of the transition rules underlying the linear and nonlinear dynamics, 
without observing the true hidden states xt. c, Prediction error in the absence of random replacement and/or monochrome inversion of digit images, as a 
counterpart of Fig. 2d. PredPCA’s outcomes are retained with or without those distortions, and relevant encoders comprise up to 10 dimensions owing to 
the construction of the input data, highlighting the robustness of PredPCA to various types of large noise. In particular, in the presence of monochrome 
inversion, irrespective of random replacement of digits, Nu = 10 provides the global minimum of both equations (6) and (7). Conversely, in the absence of 
monochrome inversion, Nu = 9 provides their global minimum as in this case, the 10-dimensional hidden state representation becomes redundant. This is 
because without monochrome inversion, true hidden states take only 10 different positions in the 10-dimensional coordinate, which can be fully expressed 
by the 9-dimensional coordinate. Remarkably, PredPCA could detect their difference. Note that monochrome inversion corresponds to the first principal 
component (PC1) of PredPCA. This is because whether the next image is a ‘black digit on white background’ or ‘white digit on black background’ is the 
most predictable feature as the monochrome inversion rarely occurs. Thus, a relatively large prediction error in the absence of monochrome inversion is 
due to the lack of the PC1. d, PredPCA increases its performance as the number of past observations used for prediction (Kp) increases until reaching its 
finite optimum. Left panel: error in categorizing digits, which converges to near zero as Kp increases (refer to Fig. 2b). Middle panel: parameter estimation 
error (refer to Fig. 2c). Right panel: test prediction error (refer to Fig. 2d). The blue line is the optimal test prediction error computed via supervised 
learning. The red line indicates the theoretical value computed using equation (7), wherein Kp = 10 (green line) gives its minimum, which matches 
empirical observations (black circles). These observations imply that predicting single-time-step future outcomes (st+1) using multi-time-step past 
observations (ϕt) is key to reducing those errors. Note that an extension of PredPCA for multi-time-step prediction while retaining its accuracy is provided 
in Methods section ‘Derivation of PredPCA'. c and d are obtained with 20 different realizations of digit sequences.
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Extended Data Fig. 2 | Comparison with related methods. The errors in estimating system parameters (left and middle panels, as a counterpart of Fig. 2c)  
and in predicting one-step future inputs in test ascending sequence (right panels, refer to Fig. 2d) are shown. a, Performance of linear TAE. Although 
it estimates matrix A with high accuracy, it fails to estimate other parameters, because linear TAE (same as PredPCA with ϕt = st) does not effectively 
filter out observation noise. Moreover, linear TAE yields a larger test prediction error even relative to PredPCA with ϕt = st owing to the difference in their 
cost functions. This is because PredPCA (even with ϕt = st) extracts components most important to predicting high variant signals preferentially, and 
thereby provides the global minimum of the squared error in predicting the non-normalized target signal (under the constraint of ϕt = st), while linear 
TAE minimizes a normalized target signal (see Methods section ‘Filtering out observation noise' for more details). For reference, the blue and red lines 
in the right panel represent the optimal test prediction error computed via supervised learning and that of PredPCA with ϕt = st, respectively. The results 
are obtained with 20 different realizations of digit sequences. b, Performance of SSM based on Kalman filter. SSM also tends to fail system identification 
depending on initial conditions and training history, which leads to a relatively larger prediction error. In the left panel, lines and shaded areas indicate the 
median and the 25th to 75th percentile area, respectively. The results are obtained with 100 different realizations of digit sequences.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Accuracy of long-term predictions. PredPCA and SSM can both yield generative models to predict an arbitrary future. However, 
SSM can fail to identify system parameters depending on initial conditions and training history, leading to the failure of long-term predictions even if 
provided with a winner-takes-all operation. a, Outcomes of PredPCA offer long-term prediction via greedy prediction based on iterative winner-takes-all 
operations, regardless of training dataset. Each row indicates a prediction based on a different realization of training sequence. A transition mapping  
from xt|t-1 to xt+1|t is assumed. b, The long-term prediction is successful even if a transition mapping from xt|t-1 ⊗ xt-1|t-2 to xt+1|t is assumed, indicating the 
minimal influence of the assumed model structure (that is, prior knowledge). c, PredPCA can also predict Fibonacci sequences in the long term, regardless 
of the training dataset. d, Model selection to determine the optimal number of step backs. Here, the standard AIC was used for model selection. We 
considered the following four models based on four types of polynomial basis functions, xt|t-1, xt|t-1 ⊗ xt-1|t-2, xt|t-1 ⊗ xt-1|t-2 ⊗ xt-2|t-3, and xt|t-1 ⊗ xt-1|t-2 ⊗ xt-2|t-3  
⊗ xt-3|t-4. The state in the next time period xt+1|t was predicted based on these four types of bases, followed by a winner-takes-all operation to conduct the 
greedy prediction, and their AICs were compared. Left panel: To explain the ascending order sequences, a mapping from xt|t-1 to xt+1|t was the best among 
these four models. Right panel: To explain the Fibonacci sequences, a mapping from xt|t-1 ⊗ xt-1|t-2 to xt+1|t was significantly better than other three models. 
Here, the pairwise t test was applied based on 10 different realizations. Error bars indicate the standard deviation. e, In contrast, SSM based on Kalman 
filter tends to fail iterative prediction depending on the initial conditions of state and parameter values, and training history—even though it uses the 
winner-takes-all operation—owing to its relatively large state and parameter estimation errors. System identification using SSM is severely harmed by 
nonlinear interaction between state and parameter estimations, which yield local minima or spurious solutions (Extended Data Fig. 2b); consequently, 
SSM exhibits an approximately 6% categorization error (Fig. 2b). These inaccuracies undermine iterative predictions using SSM even when states are 
de-noised in each step using a winner-takes-all operation.

Nature Machine Intelligence | www.nature.com/natmachintell

http://www.nature.com/natmachintell


Articles NATurE MACHInE InTEllIGEnCEArticles NATurE MACHInE InTEllIGEnCE

Extended Data Fig. 4 | Instability of features extracted by TAE and SSM. This figure is a counterpart of Fig. 3b. TAE and SSM do not guarantee the global 
convergence of their outcomes, and as a result their extracted features are sensitive to the initial conditions, order of supplying mini batches, and level 
of observation noise. The extracted features in six trials are shown; the last three are outcomes trained with a large noise. The same training dataset was 
used for all trials. However, as initial parameter values for TAE and SSM and order of supplying mini batches were varied, different features were extracted. 
The difference in the observation noise level also altered their outcomes. These results imply the unreliability of features extracted by TAE and SSM, and 
further highlight the benefit of the global convergence guarantee of PredPCA.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Feature extraction of diving car movies. a, PC1–PC3 of the categorical features (that is, x̄t) representing the brightness and vertical 
and lateral symmetries of scenes. b, PC1 of the dynamical features (that is, Δxt+3|t) representing the lateral motion. Although (a)(b) were obtained using 
PredPCA with grouping of the data, these extracted features accurately matched those obtained using PredPCA without the six sub-groups (Fig. 4b,c). 
This implies that PredPCA offers reliable identification of relevant features, even when using the data grouping. c, 100 major categorical features ( x̄t) 
representing different categories of scenes. d, 100 major dynamical features (Δxt+3|t) responding to motions at different positions of the screen. The white 
areas indicate the receptive field of each encoder. c and d were obtained using PredPCA and ICA without the six sub-groups. Similar to Fig. 3b, these 
images visualize linear mappings from each independent component to the observation.
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