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Distinguishing examples while building
concepts in hippocampal and artificial
networks

Louis Kang 1,2 & Taro Toyoizumi 3,4

The hippocampal subfield CA3 is thought to function as an auto-associative
network that stores experiences as memories. Information from these
experiences arrives directly from the entorhinal cortex as well as indirectly
through the dentate gyrus, which performs sparsification and decorrelation.
The computational purpose for these dual input pathways has not been firmly
established. We model CA3 as a Hopfield-like network that stores both dense,
correlated encodings and sparse, decorrelated encodings. As more memories
are stored, the former merge along shared features while the latter remain
distinct. We verify our model’s prediction in rat CA3 place cells, which exhibit
more distinct tuning during theta phases with sparser activity. Finally, we find
that neural networks trained inmultitask learning benefit from a loss term that
promotes both correlated and decorrelated representations. Thus, the com-
plementary encodingswehave found inCA3 canprovide broad computational
advantages for solving complex tasks.

The hippocampus underlies our ability to form episodic memories,
throughwhichwecan recount personally experienced events fromour
daily lives1. In particular, the subfield CA3 is believed to provide this
capability as an autoassociative network2–4. Its pyramidal cells contain
abundant recurrent connections exhibiting spike-timing-dependent
plasticity5,6. These features allow networks to perform pattern
completion and recover stored patterns of neural activity from noisy
cues. Sensory information to be stored asmemories arrives to CA3 via
the entorhinal cortex (EC), which serves as themajor gateway between
hippocampus and neocortex (Fig. 1A). Neurons from layer II of EC
project to CA3 via two different pathways7. First, they synapse directly
onto the distal dendrites of CA3 pyramidal cells through the perforant
path (PP). Second, before reaching CA3, perforant path axons branch
towards the dentate gyrus (DG) and synapse onto granule cells.
Granule cell axons form the mossy fibers (MF) that also synapse onto
CA3 pyramidal cells, though at more proximal dendrites.

Along these pathways, information is transformed by each
projection in addition to being simply relayed. DG sparsifies

encodings from EC by maintaining high inhibitory tone
across its numerous neurons8. Sparsification in feedforward networks
generally decorrelates activity patterns as well9–13. The sparse,
decorrelated nature of DG encodings is preserved by the MF pathway
because its connectivity is also sparse; each CA3 pyramidal cell
receives input from only ≈50 granule cells14. In contrast, PP
connectivity is dense with each CA3 pyramidal cell receiving input
from ≈4000 EC neurons14, so natural correlations between similar
sensory stimuli should be preserved. Thus, CA3 appears to receive two
encodings of the same sensory information with different properties:
one sparse and decorrelated through MF and the other dense and
correlated through PP.What is the computational purposeof this dual-
input architecture? Previous theories have proposed that the MF
pathway is crucial for pattern separation during memory storage, but
retrieval is predominantly mediated by the PP pathway and can even
be hindered by MF inputs15–17. In these models, MF and PP encodings
merge during storage andonehybrid patternpermemory is recovered
during retrieval.
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Instead, we consider the possibility that CA3 can store both MF
and PP encodings for each memory and retrieve either of them.
Inhibitory tone selects between the two; with a higher activity
threshold, sparserMFpatterns aremore likely to be recovered, and the
opposite holds for denser PP patterns. By encoding the samememory
in two different ways, each can be leveraged for a different computa-
tional purpose. Conceptually, in terms of energy landscapes, sparser
patterns have narrower attractor basins than denser patterns because
fewer neurons actively participate (Fig. 1B). Moreover, less correlated
patterns are located farther apart compared to more correlated
patterns. Thus,MF energy basins tend to remain separate with barriers
between them, a property called pattern separation that maintains
distinctions between similarmemories and is known to exist in DG18–20.
In contrast, PP energy basins tend to merge, which enables the clus-
teringof similarmemories into concepts. This proposed ability forCA3
to recall both individual experiences and generalizations across them
would explain observed features of hippocampal function. For
instance, remembering the details of a recent visit with an acquain-
tance is an example of hippocampus-dependent episodic memory1,21.
Meanwhile, hippocampal neurons can also generalize over your visits
and respond to many different representations of your acquaintance,
including previously unseen photographs or her name in spoken or
written form22,23.

To instantiate these ideas, we constructed a model for EC, DG,
and CA3 in which CA3 stores both MF and PP encodings of each
memory (Fig. 1C). We observe that MF encodings remain distinct,
whereas PP encodings perform concept learning by merging similar
memories. Our model predicts relationships between coding
properties and network sparsity across phases of the theta oscillation,
which modulates inhibitory tone in the hippocampal region. We
tested these predictions across two publicly available datasets24,25,

and each analysis reveals that tuning of CA3 neurons is sharper
during sparse theta phases and broader during dense phases. This
supports our model and enriches our understanding of phase
coding in hippocampus. While our model does not include CA1,
we present comparative experimental analyses for this subfield
in various Supplementary Figures. Beyond asserting the presence of
complementary encodings in CA3, we demonstrate that they can offer
functional advantages. Applying inspiration from our CA3 model and
data analysis toward machine learning, we introduced a plug-and-play
loss function that endows artificial neural networks with both
correlated, PP-like and decorrelated, MF-like representations. These
networks can perform better in multitask learning compared to net-
works with single representation types, which suggests a promising
strategy for helping neural networks to solve complex tasks. While the
essential components of our networks are explained in the Results
section, their full descriptions and justifications are provided in the
Methods section with parameter values in Table 1.

Results
MF encodings remain distinct while PP encodings build con-
cepts in our model for CA3
We model how representations of memories are transformed
along the two pathways from EC to CA3 and then how the resultant
encodings are stored and retrieved in CA3. First, we focus on the
transformations between memories and their CA3 encodings.
The sensory inputs whose encodings serve as memories in our model
are FashionMNIST images26, each of which is an example belonging to
one of three concepts: sneakers, trousers, and coats (Fig. 2A). They are
converted to neural activity patterns along each projection from EC to
CA3 (Fig. 2B). Our neurons are binarywith activity values of 0 or 1. Each
image iμν representing example ν in concept μ is first encoded by EC

Fig. 1 | Overviewandmotivation. A Entorhinal cortex (EC) projects to CA3directly
via the perforant path (PP, orange) as well as indirectly through the dentate gyrus
(DG) viamossy fibers (MF, purple). Adapted fromRosenGD,Williams AG, Capra JA,
Connolly MT, Cruz B, Lu L, Airey DC, Kulkarni K, Williams RW (2000) The Mouse
Brain Library @ https://www.mbl.org. Int Mouse Genome Conference 14: 166.
https://www.mbl.org. BMFmemory encodings are believed to be sparser and less
correlated compared to PP encodings. In an autoassociative network, attractor
basins of the former tend to remain separate and those of the latter tend tomerge.

C Bymodeling hippocampal networks, we first predict thatMF and PP encodings in
CA3 can respectively maintain distinctions between memories and generalize
across them (Figs. 2–4). By analyzing publicly available neural recordings, we then
detect signatures of these encoding properties in rat CA3 place cells (Figs. 5–7). By
training artificial neural networks, we finally demonstrate that these encoding types
are suited to perform the complementary tasks of example discrimination and
concept classification (Fig. 8).
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using a binary autoencoder, whose middle hidden layer activations
represent the patterns xEC

μν (Fig. 2C). Only 10% of the neurons are
allowed to be active, so the representation is sparse, and there are
more EC neurons than image pixels, so the representation is over-
complete; sparse, overcomplete encoding models and autoencoder

neural networks are common unsupervised models for natural image
processing27–30.

From EC, we produce DG, MF, and PP encodings with random,
binary, and sparse connectivity matrices between presynaptic
and postsynaptic regions (Fig. 2D), i.e., from EC to DG, from DG to
CA3 via MF, and from EC to CA3 via PP. Each matrix transforms
presynaptic patterns xpre

μν into postsynaptic inputs, which are con-
verted into postsynaptic patterns xpost

μν at a desired density using
a winners-take-all approach. That is, the postsynaptic neurons
receiving the largest inputs are set to 1 and the others are set to 0. We
define density to be the fraction of active neurons, so lower values
correspond to sparser patterns. Enforcing a desired postsynaptic
pattern density is equivalent to adjusting an activity threshold. At
CA3, two encodings for each image converge: xMF

μν with density 0.02
and xPP

μν with density 0.2. Not only are MF patterns sparser, they are
less correlated with average correlation 0.01, compared to a corre-
sponding value of 0.09 for PP patterns. Such an association
between sparsification and decorrelation has been widely reported
across many theoretical models and brain regions10–13, and it is also
captured by our model. Decreasing postsynaptic pattern density
(sparsification) correspondingly decreases the postsynaptic correla-
tion (decorrelation) for any presynaptic statistics (Fig. 2E). We con-
tribute further insight by deriving an explicit mathematical formula
that connects densities and correlations of patterns in presynaptic and
postsynaptic networks:

ρpost =
Γ

ffiffiffi
2

p
erfc�1ð2apostÞ,apre +ρpre � apreρpre

h i
� a2

post

apostð1� apostÞ
,

where Γ½ϕ,σ� � 1
2π

Z π

arccos σ
dψ exp � ϕ2

1 + cosψ

" #

ð1Þ

Fig. 2 | We model the transformation of memory representations along hip-
pocampal pathways; MF and PP encodings of the same memories converge
at CA3. A Memories are FashionMNIST images, each of which is an example of a
concept. B Overview of model pathways. Encoding pathways correspond to the
biological architecture in Fig. 1A. Decoding pathways are used to visualize CA3
activity and are not intended to have biological significance. C We use an auto-
encoderwith a binarymiddle layer to transformeachmemory iμν into an ECpattern
xEC
μν . D From EC to CA3, we use random binary connectivity matrices to transform

each presynaptic pattern xpre
μν to a postsynaptic pattern xpost

μν . E Enforcing sparser

postsynaptic patterns in D promotes decorrelation. Dark gray indicates use of xEC
μν

as presynaptic patterns. Points indicate means and bars indicate standard devia-
tions over 8 random connectivity matrices. Green indicates randomly generated
presynaptic patterns at various densities apre and correlations ρpre. Theoretical
curves depict Eq. (1). F To visualize CA3 encodings, we pass them through a feed-
forward network trained to produce the corresponding xEC

μν for each xMF
μν and xPP

μν .
Images are then decoded using the autoencoder inC. Source data are provided as a
Source Data file.

Table 1 | Keyhippocampusmodel parameters and their values
unless otherwise noted

Parameter Value See also

number of concepts 3 Fig. 2A

examples stored per concept s 1–100 Fig. 3

EC network size NEC 1024 Eqs. (5) and (6),
Fig. 2C, D

DG network size NDG 8192 Eq. (6), Fig. 2D

CA3 network size NCA3 2048 Eqs. (6) and (8),
Figs. 2D and 3

EC pattern density aEC 0.1 Eqs. (5) and (6),
Fig. 2C, D

DG pattern density aDG 0.005 Eq. (6), Fig. 2D

MF pattern density aMF 0.02 Eq. (6), Fig. 2D

PP pattern density aPP 0.2 Eq. (6), Fig. 2D

EC pattern correlation ρEC 0.15 Eqs. (5) and (6),
Fig. 2C, D

DG pattern correlation ρDG 0.02 Eq. (6), Fig. 2D

MF pattern correlation ρMF 0.01 Eq. (6), Fig. 2D

PP pattern correlation ρPP 0.09 Eq. (6), Fig. 2D

PP pattern strength ζ 0.1 Eq. (8), Fig. 3A

fraction of neurons flipped to form cue 0.01 Fig. 3B

rescaled threshold θ0 0–0.5 Eq. (11), Fig. 3C

rescaled inverse temperature β0 100 Eq. (11)
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and erfc�1 is the inverse complementary error function. In other words,
given the density apre and correlation ρpre of the presynaptic patterns
and the desired density apost of the postsynaptic patterns, the post-
synaptic correlation ρpost is determined. Equation (1) is remarkable in
that only these four quantities are involved, revealing that at least in
some classes of feedforward networks, other parameters such as net-
work sizes, synaptic density, and absolute threshold values do not
contribute to decorrelation. It is derived in Supplementary Information,
and its behavior is further depicted in Supplementary Fig. 2B, C.

Ultimately, the encodingpathways in Fig. 2C–EprovideCA3with a
sparse, decorrelated xMF

μν and a dense, correlated xPP
μν for eachmemory,

in accordance with our biological understanding (Fig. 1A, B). Next, we
aim to store these patterns in an autoassociative model of CA3. Before
doing so, we develop visualization pathways that decode CA3

representations back into images, so memory retrieval can be intui-
tively evaluated. This is accomplished by training a continuous-valued
feedforward network to associate each MF and PP pattern with its
corresponding EC pattern (Fig. 2F). From there, the reconstructed EC
pattern can be fed into the decoding half of the autoencoder in Fig. 2C
to recover the image encoded by CA3. These decoding pathways are
for visualization only and are not designed tomimic biology, although
there may be parallels with the neocortical output pathway from CA3
to CA1 and deep layers of EC7. The neuroanatomical connectivity of
CA1 ismorecomplex and includes temporoammonic inputs fromECas
well as strong secondary outputs through the subiculum, which also
reciprocally connects with EC.

Now, we model memory storage in the CA3 autoassociative net-
work. For each example ν in concept μ, its MF encoding xMF

μν arrives at

Fig. 3 | We model CA3 to store both MF and PP encodings of the same mem-
ories; MF examples remain distinct while PP examples build concept repre-
sentations. A–C Overview of the Hopfield-like model for CA3. A We store linear
combinations of MF and PP encodings, with greater weight on the former because
MF inputs are stronger. B Retrieval begins by initializing the network to a stored
pattern corrupted by flipping the activity of randomly chosen neurons. C During
retrieval, the network is asynchronously updated with a threshold θ that controls
the desired sparsity of the recalled pattern. D, E Retrieval behavior using MF cues.
Examples from the three concepts depicted in Fig. 2A are stored.DVisualizations of
retrieved patterns. MF encodings, retrieved at high θ, maintain distinct repre-
sentations of examples. PP encodings, retrieved at low θ, merge into concept
representations as more examples are stored (compare with average image in

Fig. 2A). E Overlap of retrieved patterns with target patterns: MF examples, PP
examples, or PP concepts defined by averaging over PP examples and binarizing
(Methods). Solid lines indicatemeans, shaded regions indicate standarddeviations,
and the dashed orange line indicates the theoretically estimated maximum value
for concept retrieval (Methods). In all networks, up to 30 cues are tested. F,
G Similar toD, E, but using PP cues.HNetwork capacities computed using random
MF and PP patterns instead of FashionMNIST encodings. Shaded regions indicate
regimes of high overlap between retrieved patterns and target patterns (Supple-
mentary Information).MF patterns have density 0.01 and correlation 0. PP patterns
have density 0.5. I Similar to H, but overlaying capacities for MF examples and PP
concepts to highlight the existence of regimes in which both can be recovered.
Source data are provided as a Source Data file.
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the proximal dendrites and its PP encoding xPP
μν arrives at the distal

dentrites of CA3 pyramidal cells (Fig. 3A). The relative strength of PP
inputs is weaker because PP synapses are locatedmore distally and are
observed to be much weaker thanMF synapses, which are even called
detonator synapses7,31,32. The inputs are linearly summed and stored in
a Hopfield-like network33, with connectivity

Wij ∼
X
μν

0:9 xMF
μνi +0:1 x

PP
μνi

� �
0:9 xMF

μνj +0:1 x
PP
μνj

� �
, ð2Þ

where i and j are respectively postsynaptic and presynaptic neurons.
Equation (2) captures themost crucial terms inWij; seeMethods for the
full expression. While we assume linear summation between xMF

μν and
xPP
μν for simplicity, integration of inputs across CA3 dendritic com-

partments is known to be nonlinear17,34,35. Moreover, sublinear sum-
mation can also arise from a temporal offset between MF and PP
inputs, in which case changes in synaptic weights across pathways
could be weaker than those within the same pathway according to
spike-timing-dependent plasticity5,6. In Supplementary Fig. 3F, we
show that network behavior can be maintained when nonlinearity is
introduced.

In previous models, CA3 would retrieve only MF encodings,
only PP encodings, or only the activity common between MF–PP
pairs15–17. We assess the ability of the network to retrieve either xMF

μν or
xPP
μν using either encoding as a cue (Fig. 3B). Each cue is corrupted by

flipping randomly chosen neurons between active and inactive and is
set as the initial network activity. During retrieval, the network is
asynchronously updated via Glauber dynamics36. That is, at each
simulation timestep, one neuron is randomly selected to be updated
(Fig. 3C). If its total input from other neurons exceeds a threshold θ,
then it is more likely to become active; conversely, subthreshold total
input makes silence more likely. The width of the sigmoid function in
Fig. 3C determines the softness of the threshold. A large width implies
that activation and silence are almost equally likely for recurrent input
near threshold. A small width implies that activation is almost guar-
anteed for recurrent input above threshold and almost impossible for
input below threshold. See Methods for the full expression of this
update rule.

The threshold θ represents the general inhibitory tone of CA3 and
plays a key role in retrieval. At high θ, neural activity is disfavored, so
we expect the network to retrieve the sparser, more strongly stored
MF encoding of the cue. Upon lowering θ, more neurons are permitted
to activate, so thoseparticipating in the denser,moreweakly stored PP
encoding should become active as well. Because our neurons are
binary, active neurons in either the MF or the PP encoding would have
the same activity level of 1, even though their connectivity strengths
differ. This combined activity of both encodings is almost the same as
the PP encoding alone, which contains many more active neurons.
Thus, we expect the network to approximately retrieve the PP
encoding at low θ.

Figure 3 D–G illustrates the central behavior of our CA3 model;
see Supplementary Fig. 3A, B for trouser and coat visualizations, which
behave similarly to the sneaker visualizations shown here. First using
MFencodings as cues,we seek to retrieve eitherMForPP encodings by
respectively setting a high or low threshold. As we load the network
with increasingly more stored examples, distinct MF examples can
consistently be retrieved with high threshold (Fig. 3D). Meanwhile,
retrieval of PP examples with low threshold fails above 1–2 examples
stored per concept. At large example loads, the network again
retrieves a sneaker memory when cued with sneaker examples. How-
ever, this memory is the same for all sneaker cues and appears similar
to the average image over all sneaker examples (Fig. 2A), which cap-
tures common sneaker features (Supplementary Fig. 2A). Thus, the
network is retrieving a representation of the sneaker concept. Notably,
concepts are never directly presented to the network; instead, the

network builds them through the unsupervised accumulation of cor-
related examples. The retrieval properties visualized in Fig. 3D are
quantified in Fig. 3E by computing the overlap between retrieved and
target patterns. Across all example loads shown, retrievedMF patterns
overlap with target examples. As example load increases, retrieved PP
patterns transition from encoding examples to representing concepts.
We define the target pattern xPP

μ for a PP concept μ by activating the
most active neurons across PP examples within that concept until the
PP density is reached, and the dashed line in Fig. 3E coarsely estimates
the largest overlap achievable (Methods).

The network capabilities observed for MF cues are preserved
when we instead use PP cues (Fig. 3F, G) or cues combining the neu-
rons active in either encoding (Supplementary Fig. 3C–E); again, these
latter two are similar becauseMF encodings are sparse. Thus, retrieval
behavior is driven largely by the level of inhibition rather than the
encoding type of cues. This feature implies that our model is agnostic
to whether memory retrieval in the hippocampus is mediated by the
MF pathway, the PP pathway, or both. Computationally, it implies that
our model can not only retrieve two encodings for each memory but
also perform heteroassociation between them. Autoassociation and
heteroassociation are preserved over large ranges in model para-
meters (Supplementary Fig. 3F).

To show that concept target patterns xPP
μ and average images

within concepts are indeed valid representations of concepts for our
image dataset, we plot them in image space after transforming xPP

μ

through the visualization pathway (Supplementary Fig. 2A). We
observe that these two representation types appear similar to each
other and lie near the centers of well-separated clusters of examples
for eachconcept. Inmachine learning, clustering aroundcentral points
is a common paradigm for unsupervised category learning, with k-
means clustering as an example. In cognitive science as well, clustering
has been used as model for unsupervised category learning37,38, and
central representations called prototypes can be used for category
assignment39. Thus, we conclude that xPP

μ and average images can
indeed serve as concept representations. With more complex image
datasets, such as CIFAR1040, examples may not be clustered in image
space or in encoding space with our model’s simple autoencoder. To
learn concepts, nonlinear decision boundaries can identified using
supervised algorithms, but these complicated partitions of space may
not admit central prototypes that accurately represent concepts.
Alternatively, we can employ more sophisticated feature extraction
techniques to map examples into an encoding space that exhibits
clusters with simple boundaries between concepts. If that is achieved,
then central features such as averages within clusters in that space can
again serve as concept representations. More powerful feature
extraction can be incorporated in our model by substituting our sim-
ple autoencoder with, for example, an unsupervised variational auto-
encoder or a supervised deep classifier.

We investigate retrieval more comprehensively by randomly
generating MF and PP patterns across a broader range of statistics
instead of propagating images along the hippocampal pathways
in Fig. 2B (Methods). For simplicity, we take MF examples to be
uncorrelated. In Fig. 3H, I, we show regimes for successful retrieval of
MF examples, PP examples, and PP concepts. For MF and PP
examples, the network has a capacity for stored patterns above which
they can no longer be retrieved (Fig. 3H). For PP concepts, the network
requires storage of a minimum number of examples below which
concepts cannot be built. As expected intuitively, fewer examples
are needed if they aremore correlated, since common features can be
more easily deduced. Figure 3I overlays retrieval regimes for MF
examples and PP concepts. When the number of concepts is low,
there exists a regime at intermediate numbers of stored examples in
which both examples and concepts can be retrieved. This
multiscale retrieval regime corresponds to the network behavior
observed in Fig. 3D–G, and it is larger for more correlated PP
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encodings. On the other hand, its size does not substantially change
with the sparsity of MF patterns (Supplementary Fig. 3G, H). Our
capacity values agree with theoretical formulas calculated using
techniques from statistical physics41. In all, our networks with ran-
domly generated patterns demonstrate that our results generalize to
larger networks that store more examples in more concepts and are
not idiosyncratic to the pattern generation process in Fig. 2.

To further explore the heteroassociative capability of our net-
work, we cue the network with anMF pattern and apply a time-varying
threshold during retrieval. The network representation can then
alternate between the PP concept of the original cue during oscillation

phases with low threshold and various MF examples of that
concept during phases with high threshold (Fig. 4A, B). Sharply and
sinusoidally varying threshold values both produce this behavior.
From one oscillation cycle to the next, the MF encoding can hop
among different examples because concept information is pre-
ferentially preserved over example information during low-threshold
phases. If we weakly apply the MF cue as additional neural
input throughout the simulation (Methods), the network will only
alternate between the target MF example and the target PP concept.
This condition can represent memory retrieval with ongoing
sensory input. If we decrease the amplitude of the oscillation,

Fig. 4 | The CA3 model can alternate between MF example and PP concept
representations under anoscillating threshold. Four scenarios are considered: a
baseline condition with abrupt threshold changes, sinusoidal threshold changes,
threshold values of 0.55 and 0.25 instead of 0.6 and 0.2, and the weak input of an
MF cue throughout the simulation instead of only at the beginning. A Pattern
overlap dynamics. Each panel shows, from top to bottom, the threshold, overlaps
withMFexamples, andoverlapswith PP concepts. The dashedorange line indicates
the theoretically estimated maximum value for concept retrieval (Methods).
B Visualizations of retrieved patterns show alternation between examples and

concepts. In the baseline case, various examples are explored; in the cue-
throughout case, the same cued example persists.C Summary of retrieval behavior
betweenupdate cycles 60 to 120. For each scenario, 20 cues are tested in eachof 20
networks. Each panel depicts the fractions of simulations demonstrating various
example (left) and concept (right) behaviors. In all networks, 50 randomly chosen
examples from each of the 3 concepts depicted in Fig. 2A are stored. One update
cycle corresponds to the updating of every neuron in the network (Methods).
Source data are provided as a Source Data file.
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alternation between examples and concepts is disrupted and the net-
work favors one encoding type over the other. We quantify the dis-
tribution of network behaviors during high- and low-threshold phases
in Fig. 4C. The proportion of simulations in which single MF patterns
are retrieved, the persistence of the target PP concept, and other
retrieval properties vary with network parameters. In Supplementary
Fig. 4A, B, we present analogous results for randomly generated MF
and PP patterns demonstrating that these retrieval properties also
depend on MF pattern sparsity. All in all, while our network can
represent either examples or concepts at each moment in time, an
oscillating threshold provides access to a range of representations
over every oscillation cycle.

Place cell data reveals predicted relationships between encod-
ing properties and theta phase
The central feature of our CA3 model is that an activity threshold
determines whether the network retrieves example or concept
encodings. We claim that the theta oscillation in CA3 physiologically
implements this threshold and drives changes in memory scale. To be
specific, our model predicts that single neurons should convey more
informationper spike about example identity during epochs of sparser
activity (Fig. 5A). This single-neuron prediction can be tested by ana-
lyzing publicly available datasets of CA3 place cells. Figure 5B shows
one example place cell recorded while a rat traverses a linear track24,42.
During locomotion, single-neuron activity in CA3 is strongly

Fig. 5 | Place field data support themodel prediction that sparser theta phases
should preferentially encode finer, example-like positions. A Our CA3 model
predicts that single neurons convey more information per spike about example
identity during sparse regimes. Each point represents a neuron, n = 50. B Example
CA3 place cell activity along a linear track. Each spike is represented by two points
at equivalent phases with histograms over position (top) and over theta phase
(right). C Activity by theta phase for 5 CA3 place cells. D To test our model, we
construe CA3 place cells to store fine positions as examples, which can combine
into coarser regions as concepts. Here,we focuson exampleencoding.EOurmodel
predicts that CA3 place fields are more sharply tuned during sparse theta phases.
An alternative hypothesis is sharper tuning during dense phases. F Example phase-
precessing place field.G Activity (black), raw position information per spike (blue),
andmeannull-matched position information (gray) by theta phase for the field in F.

Sparsity-corrected position information is the difference between the raw and
mean null-matched values. H Null-matched place field obtained by replacing spike
positions, but not phases, with uniformly distributed random values. I Shuffled
place field obtained by permuting spike phases and positions. J, K Similar to
F, G, but for a place field that is not precessing. L Average difference in position
information between the sparsest and densest halves of theta phases. For all cell
populations, sparse phases conveymoreposition information per spike. Eachpoint
represents a field. All and shuffled n = 35, precessing n = 21, and other n = 14.
Numbers indicate p-values calculated by two-tailed Wilcoxon signed-rank tests
except for the comparison between precessing and other, which is calculated by
the two-tailed Mann-Whitney U test. For all results, spikes during each traveling
direction are separately analyzed. InA and L, information is sparsity-correctedwith
horizontal lines indicating medians. Source data are provided as a Source Data file.
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modulated by the theta oscillation (Fig. 5C); we use this activity as an
indicator of network sparsity since a relationship between the two has
been observed (Fig. 3 in Skaggs et al.43). We assume an equivalence
between the encoding of images by our CA3 model and the encoding
of spatial positions by CA3 place cells (Fig. 5D). Examples are equiva-
lent to fine positions along the linear track. Just as similar examples
merge into concepts, nearby positions can aggregate into coarser
regions of space. Through this equivalence, we can translate the pre-
diction about example information per spike (Fig. 5A) into a prediction
about spatial tuning (Fig. 5E). During denser theta phases, place fields
should be broader, which corresponds to lower position information
per spike. This prediction relies on our claim that the theta oscillation
in CA3 acts as the inhibitory threshold of our model. A priori, the
alternative prediction that place fields are sharper during dense theta
phases is an equally valid hypothesis. Higher activity may result from
strongdrive by external stimuli that theneuron serves to encode,while
lower activity may reflect noise unrelated to neural tuning. The shar-
pening of visual tuning curves by attention is an example of this
alternative prediction44. From a more general perspective, the model
and alternative predictions in Fig. 5E roughly correspond to sub-
tractive and divisive modulation of firing rates, respectively. Both
kinds of inhibitory effects are found in cortical circuits45–47.Wewill now
testwhether experimental data reflectourmodel prediction of sharper
place field tuning with higher spatial information during sparser theta
phases, which would support a subtractive role of theta as an oscil-
lating inhibitory threshold over a divisive one.

First, we investigate the encoding of fine, example-like positions
by analyzing phase-dependent tuning within single place fields. We
use the Collaborative Research in Computational Neuroscience
(CRCNS) hc-3 dataset contributed by György Buzsáki and
colleagues24,42. Figure 5F shows one extracted field that exhibits pha-
se precession (for others, see Supplementary Fig. 5A). At each phase,
we compute the total activity as well as the information per
spike conveyed about position within the field (Fig. 5G and Supple-
mentary Fig. 5B). It is well known that the estimation of information
per spike is strongly biased by sparsity. Consider the null data in
Fig. 5H that is matched in spike phases; spike positions, however, are
randomly chosen from a uniform distribution. In the large spike
count limit, uniformly distributed activity should not convey any
information. Yet, the null data show more position information
per spike during sparser phases (Fig. 5G). To correct for this bias,
we follow previous protocols and subtract averages over many
null-matched samples from position information48. In all of our
comparisons of information between sparse and dense phases,
including themodel prediction in Fig. 5A, we report sparsity-corrected
information. For further validation, we generate a shuffled dataset
that disrupts any relationship between spike positions and phases
found in the original data (Fig. 5I). Figure 5J, K illustrates a second
place field whose tuning also depends on theta phase but does
not exhibit precession. For each theta-modulated CA3 place field, we
partition phases into sparse and dense halves based on activity, and
we average the sparsity-corrected position information per spike
across each partition. CA3 place fields convey significantly more
information during sparse phases than dense phases (Fig. 5L). This
relationship is present in both phase-precessing and other fields
(although slightly non-significantly in the latter) and is absent in the
shuffled data. Thus, experimental data support ourmodel’s prediction
that CA3 encodes information in a finer, example-like manner during
sparse theta phases. Notably, CA1 place fields do not convey more
information per spike during sparse phases, which helps to show that
our prediction is nontrivial and demonstrates that the phase behavior
in CA3 is not just simply propagated forward to CA1 (Supplemen-
tary Fig. 5C).

To characterize the relationship between information and theta
phase more precisely, we aggregate spikes over phase-precessing

fields in CA3 and in CA1 (Supplementary Fig. 5D–G). This process
implicitly assumes that each phase-precessing field is a sample of a
general distribution characteristic to each region. These aggregate
fields recapitulate the single-neuron results that CA3 spikes are
uniquely more informative during sparse phases (Supplementary
Fig. 5H). They also reveal how position information varies with other
field properties over theta phases (Supplementary Fig. 5I, J). For
example, information is negatively correlated with field width, con-
firming the interpretation that more informative phases have sharper
tuning curves (Fig. 5E). In CA3, information is greatest during early
progression through the field, which corresponds to future locations,
with a smaller peak during late progression, which corresponds to past
locations. In contrast, past locations are more sharply tuned in CA1.
Thus, different hippocampal subfields may differentially encode past
and future positions across the theta cycle; we will return to this topic
in the Discussion.

Next, we turn our attention to the representation of concepts
instead of examples. Our model predicts that single neurons exhibit
more concept information per spike during dense activity regimes
(Fig. 6A). To test this prediction using the same CRCNS hc-3 dataset,
we invoke the aforementioned equivalence between concepts in our
model and coarser positions along a linear track (Fig. 6B). Thus, single
CA3 neurons should encode more information per spike about coarse
positions during dense theta phases. Previously, to test for finer
position encoding in Fig. 5, we divided single place fields into multiple
position bins during the computation of information. Here, we analyze
encoding of coarser positions by choosing large position bins across
the whole track (Fig. 6C, D). We consider different bin sizes to char-
acterize at which scale the merging of examples into concepts occurs.
When we again compute the average difference in sparsity-corrected
position informationper spikebetween sparse anddense theta phases,
wefind that densephases are themost preferentially informative at the
coarsest scales (Fig. 6E). CA1 place cells also exhibit this property
(Supplementary Fig. 6B). Crucially, differences between sparse and
dense phases are not seen in shuffled data, which supports the validity
of our analysis methods (Fig. 6F). Our results are further bolstered by
their preservation under a different binning procedure (Supplemen-
tary Fig. 6C–E). Thus, coarse positions along a linear track can be best
distinguished during dense theta phases, in agreement with our
model. Note that we always consider 4 bins at a time even for track
scales smaller than 1/4, because changing the number of bins across
scales introduces a bias in the shuffled data (Supplementary
Fig. 6F–H). At finer scales, this process sometimes fails to capture
entire fields and artificially splits them (Fig. 6C, left). Here, we adopt a
neutral approach and do not adjust our partitions to avoid these cases;
the opposite approach was adopted in Fig. 5 where intact fields were
explicitly extracted. These different approaches may explain why at
the finest scales in Fig. 6E, sparse phases do not convey more infor-
mation like they do in Fig. 5L.

In our model, concepts are formed by merging examples across
all correlated features. While track position can be one such feature,
we now assess whether our predictions also apply to another one. In
the CRCNS hc-6 dataset contributed by Loren Frank and colleagues,
CA3 place cells are recorded during aW-maze alternation task in which
mice must alternately visit left and right arms between runs along the
center arm25. It is known that place cells along the center arm can
encode the turn direction upon entering or leaving the center arm in
addition to position49,50. Again, our model predicts that sparse theta
phases preferentially encode specific information (Fig. 7A), so they
should be more tuned to a particular turn direction (Fig. 7B). During
dense phases, they should generalize over turn directions and solely
encode position.

Figure 7C shows spikes fromone CA3 place cell accumulated over
outward runs along the center arm followedbyeither left or right turns
(Supplementary Fig. 7A). For each theta phase, we compute the total
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activity, the turn information per spike (ignoring position), and the
mean information of null-matched samples used for sparsity correc-
tion (Fig. 7D). Figure 7E, F shows similar results for inward runs (for
others, see Supplementary Fig. 7B, C). For both outward and inward
runs, sparsity-corrected turn information per spike is greater during
sparse theta phases compared to dense phases (Fig. 7G). This finding is
not observed in data in which theta phase and turn direction are
shuffled (Fig. 7G,H). Not only do these results support ourmodel, they
also reveal that in addition to splitter cells that encode turn direction
over all theta phases51, CA3 containsmanymore placecells that encode
it only at certain phases (Supplementary Fig. 7D). The difference
between sparse and dense phases is significantly greater in CA3 than it
is in CA1 (Supplementary Fig. 7E, F). Thus, our subfield-specific results

for example encoding are consistent across position and turn direc-
tion. Aggregate neurons, formed by combining spikes from more
active turn directions and those from less active turn directions,
demonstrate similar tuning properties to individual neurons (Supple-
mentary Fig. 7G–I).

Beyond the single-neuron results presented above, we seek to test
our predictions at the population level. To do so, we perform phase-
dependent Bayesian population decoding of turn direction during
runs along the center arm (Fig. 7I). This analysis requires multiple
neurons with sufficiently sharp tuning to be simultaneously active
across all theta phases; it can be used to decode left versus right turns,
whereas an analogous decoding of track position, which spans amuch
broader range of values, is intractable with our datasets. We find that

Fig. 6 | Place cell data support the model prediction that denser theta phases
should preferentially encode coarser, concept-like positions. AOur CA3 model
predicts that single neurons convey more information per spike about concept
identity during dense regimes. Each point represents a neuron, n = 50.BTo test our
model, we construe CA3 place cells to store fine positions as examples, which can
combine into coarser regions as concepts. Here, we focus on concept encoding.
C We calculate position information at various track scales over windows of 4
contiguous bins. D Activity (black), raw position information per spike (blue), and
mean null-matched position information (gray) by theta phase for the red windows
in C. Sparsity-corrected position information is the difference between the raw and

mean null-matched values. E Average difference in position information between
the sparsest and densest halves of theta phases. For coarser scales, dense phases
convey more position information per spike. Each point represents values from a
place cell averaged over all windows. Track scale 1/16 n = 47, 1/8 n = 49, and 1/4
n = 56. Numbers indicate p-values calculated by two-tailed Wilcoxon signed-rank
tests for each scale and by Spearman’s ρ for the trend across scales. F Similar to
E, but for shuffled data whose spike phases and positions are permuted. For all
results, spikes during each traveling direction are separately analyzed. In A, E, and
F, information is sparsity-corrected with horizontal lines indicating medians.
Source data are provided as a Source Data file.
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the CA3 population likelihood exhibits greater confidence during
sparse phases (Fig. 7J). From a Bayesian perspective, the population
expresses stronger beliefs about turn direction during sparse phases
and is more agnostic during dense phases. If pressed to choose the
direction with a higher likelihood as its estimate, CA3 is also more
accurate during sparse phases (Fig. 7K, L). These results match our
predictions in Fig. 7A, B and bolster our single-neuron results.

Moreover, they are specific to CA3, as similar conclusions cannot be
made about the CA1 place cell population (Supplementary Fig. 7J–L).

In summary, extensive data analysis reveals experimental
support for our CA3 model over two datasets collected by different
research groups, across two encoding modalities, for both example
and concept representations, and at both the single-neuron and
population level.

Fig. 7 | W-maze data support the model prediction that sparser theta phases
should preferentially encode turn direction in addition to position. A Same as
Fig. 5A. B To test our model, we construe CA3 place cells to store turn directions
during the central arm of a W-maze alternation task as examples. By combining
examples, concepts that generalize over turns to solely encode position can be
formed. C–H Single-neuron information results. C Example place cell that is active
during outward runs. Each spike is represented by two points at equivalent phases
with different colors representing different future turn directions. D Activity
(black), raw turn information (blue), and mean null-matched turn information
(gray) by theta phase for the neuron inC. Sparsity-corrected turn information is the
difference between the raw andmean null-matched values. E, F Similar to C,D, but
for a place cell that is active during inward runs with colors representing past turn
directions. G Average difference in turn information between the sparsest and
densest halves of theta phases. For all cell populations, sparse phases conveymore
turn information per spike. Each point represents a place cell. All and shuffled
n = 99, outward runs n = 56, and inward runs n = 43. Numbers indicate p-values

calculated by two-tailed Wilcoxon signed-rank tests except for the comparison
between outward and inward runs, which is calculated by the two-tailed Mann-
Whitney U test. H Cumulative distribution functions for values in G. I–L Bayesian
population decoding results. I Likelihood of left (L) or right (R) turns during four
runs along the center armusing spikes from either the sparsest or densest halves of
theta phases. J Sparse encodings exhibit greater confidence about turn direction.
Vertical lines indicate medians with p-value calculated by the two-tailed Mann-
Whitney U test. K Average difference in maximum likelihood estimation accuracy
between the sparsest and densest halves of theta phases. Sparse phases encode
turn direction more accurately. Each point represents one run averaged over
decoded timepoints. All runs and shuffled n = 91. Numbers indicate p-values cal-
culated by two-tailed Wilcoxon signed-rank tests. L Cumulative distribution func-
tions for values in K. For all results, spikes during each traveling direction are
separately analyzed. In A, G, and H, information is sparsity-corrected. Source data
are provided as a Source Data file.
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CA3-like complementary encodings improve neural network
performance in multitask machine learning
Wehave observed howCA3 encodes behaviorally relevant information
at different scales across theta phases. Can these different types of
encodings be useful for solving different types of tasks? Can they even
benefit neural networks designed for machine learning, abstracting
away from the hippocampus? To address these questions, we turn to a
classic paradigm in machine learning: a multilayer perceptron trained
on MNIST handwritten digit images52. First, we augment the MNIST
dataset by randomly assigning an additional label to each image: a set
number (Fig. 8A).We train the fully connected feedforward network to
perform one of two tasks: classification of the written digit or identi-
fication of the assigned set (Fig. 8B). The former requires clustering of

images based on common features, which resembles concept learning
in our CA3 model, and the latter requires discerning differences
between similar images, which resembles example learning in our CA3
model (Fig. 8C). We use a held-out test dataset to evaluate digit clas-
sification performance and corrupted images from the train dataset to
evaluate set identification performance.

In our CA3 model, we found that examples were preferentially
encoded by the decorrelated MF pathway and concepts by the corre-
lated PP pathway (Fig. 3). In an analogous fashion, we seek to manip-
ulate the correlation properties within the final hidden layer of our
perception, whose activations sα serve as encodings of the input
images iα. In particular, we apply a DeCorr loss function, which pena-
lizes correlations in sα between every pair of items α, β in a training

Fig. 8 | Complementary encodings inspired by CA3 can improve machine
learning performance in a complex task. A We extend the MNIST dataset by
randomly assigning an additional set label to each image.B–FWe train amultilayer
perceptron to either classify digits or identify sets. B Network architecture. Each
hidden layer contains 50 neurons. C Task structures. Digit classification requires
building concepts and is tested with held-out test images. Set identification
requires distinguishing examples and is tested with noisy train images.DWe apply
the DeCorr loss function (Eq. (3)) to decorrelate encodings in the final hidden layer,
in analogy with MF patterns in CA3. Without an encoding loss function, image
correlations are preserved, in analogy with PP patterns. E, F DeCorr decreases
concept learning performanceand increases example learningperformance. Points
indicate means and bars indicate standard deviations over 32 networks. G–J We
train a multilayer perceptron to simultaneously classify digits and identify sets.
G Network architecture. Each hidden layer contains 100 neurons. The train dataset

contains 1000 images and 10 sets.HWeapply theHalfCorr loss function (Eq. (4)) to
decorrelate encodings only among the second half of the final hidden layer. Cor-
related and decorrelated encodings are both present, in analogy with MF and PP
patterns across the theta cycle in CA3. I DeCorr networks generally perform better
at example learning but worse at concept learning compared to baseline. HalfCorr
networks exhibit high performance in both tasks. Open symbols represent indivi-
dual networks and filled symbols represent means over 64 networks. J Influence of
each neuron inHalfCorr networks on concept and example learning, defined as the
average decrease in accuracy upon clamping its activation to0.Correlated neurons
(orange bars) are more influential in concept learning, and decorrelated neurons
(purple bars) are more influential in example learning. For all results, p-values are
computed using unpaired two-tailed t-tests. Source data are provided as a Source
Data file.

Article https://doi.org/10.1038/s41467-024-44877-0

Nature Communications |          (2024) 15:647 11



batch (Fig. 8D):

LDeCorr≈
1
2

X
α,β2
batch

Pearsonðsα ,sβÞ2: ð3Þ

DeCorr mimics the MF pathway; the equation is approximate due to a
slightmodification of the Pearson correlation formula to aid numerical
convergence (Methods). Alternatively, we consider the baseline con-
dition with no loss function on hidden layer activations, which pre-
serves natural correlations between similar images and mimics the PP
pathway. Indeed, we observe that different encoding properties are
suited for different tasks. Baseline networks perform better in concept
learning (Fig. 8E) while DeCorr networks perform better in example
learning (Fig. 8F), and these effects vary consistently with the strength
of the DeCorr loss function (Supplementary Fig. 8A, B). Thus, DeCorr
allows us to tune encoding correlations in neural networks to highlight
input features at either broader or finer scales. Tasks can be solved
more effectively by matching their computational requirements with
the appropriate encoding scale. Note that DeCorr is different from the
DeCov loss function previously developed to reduce overfitting53.
DeCorr decorrelates pairs of inputs across all neurons in the specified
layer, whereas DeCov decorrelates pairs of neurons across all inputs.
As a regularizer that promotes generalization, DeCov improves digit
classification and does not substantially improve set identification,
which contrasts with the effect of DeCorr (Supplementary Fig. 8C, D).

Complex tasks, including those performed by biological systems,
may require information to be processed at different scales of corre-
lation. In CA3, a spectrum of encodings is available during each theta
cycle. Can neural networks take advantage of multiple encodings? We
tackle this question by asking a perceptron to simultaneously perform
digit classification and set identification (Fig. 8G). In addition to the
baseline and DeCorr networks, we define a HalfCorr loss function
(Fig. 8H):

LHalfCorr≈
1
2

X
α,β2
batch

Pearsonðshalfα ,shalfβ Þ2, ð4Þ

where shalfα represents the second half of neurons in the final hidden
layer. After training with this loss function, the neural representation
consists of both a correlated, PP-like component in the first half and a
decorrelated,MF-like component in the secondhalf.Whenweevaluate
these networks on both digit classification and set identification, we
see that baseline and DeCorr networks behave similarly to how they
did on single tasks. Compared to baseline, DeCorr networks perform
better in example learning at the cost of poorer concept learning
(Fig. 8I). However, HalfCorr networks do not suffer from this tradeoff
and perform well at both tasks. Their superior performance is
maintained over a variety of network and dataset parameters
(Supplementary Fig. 8E). Moreover, HalfCorr networks learn to
preferentially use each type of encoding for the task to which it is
better suited. We use the decrease in task accuracy upon silencing a
neuron as ametric for its influence on the task. Correlated neurons are
more influential in concept learning and decorrelated neurons in
example learning (Fig. 8J).

Note that we do not manipulate pattern sparsity in these artificial
networks. Sparsification can be useful in the hippocampus because it
provides a biologically tractable means of achieving decorrelation. It
also allows biological networks to access both less and more corre-
lated representations by changing the level of inhibition. Instead, we
can directly manipulate correlation through the DeCorr and HalfCorr
loss functions. Under some conditions, the decorrelated half of the
final hidden layer in HalfCorr networks indeed exhibits sparser acti-
vation than the correlated half (Supplementary Fig. 8F). It is possible
that directly diversifying sparsity can also improve machine learning

performance, especially since sparse coding is known to offer certain
computational advantages as well as greater energy efficiency27,54,55.

Discussion
The hippocampus is widely known to produce our ability to recall
specific vignettes as episodic memories. This process has been
described as indexing every sensory experience with a unique neural
barcode so that separate memories can be independently
recovered56,57. Recently, research has shown that the hippocampus is
also important in perceiving commonalities and regularities across
individual experiences, which contribute to cognitive functions such
as statistical learning58,59, category learning60–63, and semantic
memory64–66. Evidence for this has been obtained largely through
human studies, which can present and probe memories in controlled
settings. However, the detailed circuit mechanisms used by the hip-
pocampus to generalize across experiences while also indexing them
separately are not known.

Our analysis of rodent place cell recordings reveals that singleCA3
neurons alternate between finer, example-like representations and
broader, concept-like representations of space across the theta cycle
(Figs. 5–7). These single-neuron results extend to the network level,
which alternatively encodes more specific and more general spatial
features in a corresponding manner (Fig. 7). If we accept that place
cells store these features as spatial memories, then our experimental
analysis reveals that CA3 can access memories of different scales at
different theta phases.Wepropose that the computationalmechanism
underlying these observations is the multiplexed encoding of each
memory at different levels of correlation (Figs. 2 and 8). We show that
CA3 can biologically implement this mechanism through the storage
of both sparse, decorrelatedMF inputs anddense, correlatedPP inputs
and their alternating retrieval by the theta oscillation, which acts as an
activity threshold and subtractivelymodulates neural activity (Fig. 2, 3,
and 4). Our model performs successful pattern completion of both
types of encodings, suggesting that patterns across the theta cycle can
truly function as memories that can be recovered from partial cues.

Alone, our secondary analyses of experimental data contribute to
a large set of observations on how coding properties vary with theta
phase in the hippocampus. Of note is phase precession, in which dif-
ferent phases preferentially encode different segments within a firing
field as it is traversed, with later phases tuned to earlier segments67.
Phase precession ismost widely reported for place cells and traversals
of physical space, but it also appears during the experience of other
sequences, such as images and tasks68–70. Our analysis implies that the
sharpness of tuning is not constant throughout traversals. In parti-
cular, CA3 neurons are more sharply tuned at early positions in place
fields, while CA1 neurons are more sharply tuned at late positions
(Supplementary Fig. 5I, J). Transforming these conclusions about
position into those about time through the concept of theta sequen-
ces, CA3 represents the future more precisely, while CA1 represents
the futuremore broadly. The latter is consistent with the idea that CA1
may participate in the exploration of multiple possible future
scenarios71. Furthermore, our W-maze analysis reveals that certain
hippocampal neurons which do not obviously encode an external
modality across all theta phases, such as turn direction,maydo so only
during sparse phases (Supplementary Fig. 7D). This observation adds
to the subtleties with which the hippocampus represents the
external world.

Other groups have investigated the variation of place field
sharpnesswith theta phase inCA1, notCA3, and their results are largely
in agreement with our CA1 analyses. Skaggs et al.43 partitioned theta
phases into halves, one of which with higher activity than the other,
and found more information per spike during the less active half. We
observe no difference at the single-neuron level, though our W-maze
results are only slightly non-significant (Supplementary Figs. 5C and
7E). Their partitions differ fromoursby 30∘ and they employ a different
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binning technique, both of which can influence the results. The less
informative phases in theirwork correspond to future positions,which
we also observe (Supplementary Fig. 5J). Note that their computation
of sparsity is performed along a different axis compared to ours; using
terms fromWillmore and Tolhurst72, they use the lifetime density while
we compute the population density, which fundamentally differ.
Ujfalussy and Orbán73 also found that phases with larger field sizes
correspond to future positions. Mehta et al.74 considered phase-
dependent tuningwithinCA1 placefields, but they calculatefieldwidth
over theta phase as a function of field progress, whereas we do the
opposite. Similarly, Souza and Tort75 considered phase tuning at var-
ious field progresses. Both sets of results appear to be compatiblewith
ours, but a direct comparison cannot bemade.Overall, ourwork offers
original insights into hippocampal phase coding not only by focusing
on CA3, which behaves differently from CA1, but also by elucidating a
connection between tuning width and network sparsity. Intriguingly,
Pfeiffer and Foster76 found a relationship between CA1 replay speed
and slow gamma oscillation phase, which modulates network activity
during quiescence. This observation opens the possibility that other
oscillations can leverage the connection between tuning and sparsity
when the dominant theta rhythm is absent.

Better memory performance has been associated with greater
theta power during both encoding77–82 and retrieval79,82–84. Our model
cannot explain the former because it does not contain a theta oscil-
lation during encoding. It does, however, offer a possible explanation
for the latter observation. We simulated retrieval under an oscillating
threshold with lower amplitude and observed that the network stalls
on MF example encodings instead of alternating with PP concept
encodings (Fig. 4A). Thus, the biological processes that produce larger
theta amplitudes, such as strongermedial septum inputs or changes in
neuromodulator concentrations85, may promote memory recall by
granting access to wider ranges of pattern sparsities and, conse-
quently, representational scales.

The temporal coordination between memory storage and retrie-
val is also biologically significant. We make the major simplification of
separately simulating memory storage and retrieval. These two oper-
ating regimes can represent different tones of a neuromodulator such
as acetylcholine, which is thought to bias the network towards
storage86. Another proposal is that storage and retrieval preferentially
occur atdifferent theta phases,motivatedby the variation in long-term
potentiation (LTP) strength at CA1 synapses across the theta cycle87–89.
Although this idea focuses on plasticity in CA1, it is possible that sto-
rage and retrieval also occur at different phases in CA3. Note that our
experimental analysis reveals a sharp dip in position information
around the sparsest theta phase in both CA3 and CA1 (Supplementary
Fig. 5E, G). This phase may coincide with the storage of new inputs,
during which the representation of existing memories is momentarily
disrupted; the rest of the theta cycle may correspond to retrieval. This
interpretation couldmotivate excluding the sparsest theta phase from
further analysis, since our model predictions only regard memory
retrieval. However, we take a conservative approach and include all
phases. Interestingly, recent work reported that the strength of LTP in
CA1 peaks twice per theta cycle90, suggesting for our model that MF
and PP patterns could have their own storage and retrieval intervals
during each theta cycle.

Our work connects hippocampal anatomy and physiology with
foundational attractor theory. Among others, Tsodyks and
Feigel’man91 observed that sparse, decorrelated patterns can be stored
at high capacity, and Fontanari92 found that dense, correlated patterns
canmerge into representations of common features. We demonstrate
that both types of representations can be stored and retrieved in the
same network, using a threshold to select between them. This cap-
ability can be given solid theoretical underpinnings using techniques
from statistical mechanics41. The convergence of MF and PP pathways
in CA3 has also been the subject of previous computational

investigations15–17. In these models, CA3 stores and retrieves one
encoding per memory, while our model asserts that multiple encod-
ings for the same memory alternate across the theta cycle. Another
series of models proposes, like we do, that the hippocampus can
simultaneously maintain both decorrelated, example-like encodings
and correlated, concept-like encodings93,94. These encodings converge
at CA1 and each type is not independently retrieved there, which dif-
fers from our model. In a related hippocampal model, the PP pathway
was shown to be crucial for learning cue-target associations in the
presence of additional context inputs to EC that drift over time95.
Successful learning requires the network to perform decontextuali-
zation and abstract away the slowly varying context inputs, which is,
like concept learning, a form of generalization. EC has also been
hypothesized to differentially encode inputs upstream of CA3, with
specific sensory information conveyed by lateral EC and common
structural representations by medial EC96. Further experimental
investigation into the contributions of various subregions would help
to clarify how thehippocampusparticipates inmemorygeneralization.

Finally, our work addresses how CA3-like complementary
encodings can be computationally leveraged by neural networks to
solve complex tasks. We conceptually extend our results about CA3
and introduce a HalfCorr loss function that diversifies hidden layer
representations to include both correlated and decorrelated compo-
nents (Fig. 8). HalfCorr networks can better learn tasks that involve
both distinction between similar inputs and generalization across
them. They are simultaneously capable of pattern separation and
categorization even based on small datasets, demonstrating a possible
advantage of brain computation over conventional deep learning. Yet,
we deliberately chose a neural architecture that differs from that of the
CA3 network to test the scope over which complementary encodings
can improve learning. Instead of a recurrent neural network storing
patterns of different sparsities through unsupervised Hopfield learn-
ing rules, we implemented a feedforward multilayer perceptron, a
workhorse of supervised machine learning. The success of HalfCorr
networks in this scenario supports the possibility that HalfCorr can be
broadly applied as a plug-and-play loss function to improve compu-
tational flexibility.

Functional heterogeneity is commonly invoked in the design of
modern neural networks. It can be implemented in the formof deep or
modular neural networks in which different subnetworks perform
different computations in series or parallel, respectively97,98. Of note,
Kowadlo et al.99 constructed a deep, modular network inspired by the
hippocampus for one-shot machine learning of both concepts and
examples. As an aside, their architecture shares similarities with our
hippocampus model in Fig. 2, but their Hopfield-like network for CA3
only stores MF patterns and inactivating these recurrent connections
does not affect network performance. In contrast to these networks
with specialized subnetworks, we propose a different paradigm in
which a loss function applied differentially across neurons promotes
heterogeneity within a single layer. This idea can be extended from the
two components of HalfCorr networks, correlated and decorrelated,
by assigning a different decorrelation strength to each neuron and
thereby producing a true spectrum of representations. Furthermore,
heterogeneity in other encoding properties such as mean activation,
variance, and sparsity may also improve performance in tasks with
varying or unclear computational requirements. Such tasks are not
limited to multitask learning, but also include continual learning100,
reinforcement learning101, and natural learning by biological brains.

Methods
Transformation of memories along hippocampal pathways
Binary autoencoder from images to EC. Our memories are 256 ima-
ges from each of the sneaker, trouser, and coat classes in the Fash-
ionMNIST dataset26. We train a fully connected linear autoencoder on
these imageswith three hidden layers of sizes 128, 1024, and 128. Batch
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normalization is applied to each hidden layer, followed by a rectified
linear unit (ReLU) nonlinearity for the first and third hidden layers and
a sigmoid nonlinearity for the output layer. Activations in the middle
hidden layer are binarized by a Heaviside step function with gradients
backpropagated by the straight-through estimator102. The loss func-
tion is

L=
X
μν2
batch

jĵiμν � iμν jj2 + λ
X
μν2
batch

KL
1

NEC

X
i

xEC
μνi

������ aEC

 !
, ð5Þ

where iμν is the image with pixel values between 0 and 1, îμν is its
reconstruction, xEC

μν represents the binary activations of the middle
hidden layer with NEC = 1024 units indexed by i, and aEC = 0.1 is its
desired density (Fig. 2C). Sparsificationwith strength λ = 10 is achieved
by computing the Kullback-Leibler (KL) divergence between the
hidden layer density and aEC103. Training is performed over 150 epochs
withbatch size 64using theAdamoptimizerwith learning rate 10−3 and
weight decay 10−5.

Binary feedforwardnetworks fromEC toCA3. Topropagatepatterns
from EC to DG, from DG to MF inputs, and from EC to PP inputs, we
compute

xpostμνi =Θ
X
j

W ijx
pre
μνj � θ

" #
, ð6Þ

where xpre
μν and xpost

μν are presynaptic and postsynaptic patterns, Wij is
the connectivitymatrix, and θ is a threshold. Each postsynaptic neuron
receives l excitatory synapses of equal strength from randomly chosen
presynaptic neurons. θ is implicitly set through a winners-take-all
process that enforces a desired postsynaptic pattern density apost.Θ is
the Heaviside step function, and N is the network size.

EC patterns haveNEC = 1024 and aEC = 0.1. To determineN, a, and l
for each subsequent region, we turn to estimated biological values and
loosely follow their trends. Rodents have approximately 5–10 times
more DG granule cells and 2–3 times more CA3 pyramidal cells com-
pared to medial EC layer II principal neurons14,104,105. Thus, we choose
NDG = 8192 and NCA3 = 2048. During locomotion, DG place cells are
approximately 10 times less active thanmedial EC grid cells106, andMF
inputs are expected to be much sparser than PP inputs15. Thus, we
choose aDG =0.005, aMF = 0.02, and aPP = 0.2. We do not directly
enforce correlation within concepts, which take values ρEC = 0.15,
ρDG = 0.02, ρMF =0.01, and ρPP = 0.09. Each DG neuron receives
approximately 4000 synapses from EC and each CA3 neuron receives
approximately 50 MF and 4000 PP synapses14. Thus, we choose
lDG = 205, lMF = 8, and lPP = 205. Note that for each feedforward pro-
jection, postsynaptic statistics apost and ρpost are not expected to
depend on l (Eq. (1)).

In Fig. 2E, for the caseofxpre
μν =xEC

μν , weuseNpost = 2048 and l = 205.
ρpost is obtained by computing correlations between examples within
the same concept and averaging over 3 concepts and 8 connectivity
matrices. For the case of randomly generated xpre

μν , we use
Npre =Npost = 10000, a single concept, and a single connectivity matrix
with l = 2000. See Supplementary Information for further details,
including the derivation of Eq. (1).

Visualization pathway from CA3 to EC. We train a fully connected
linear feedforward network with one hidden layer of size 4096 to map
inputs xMF

μν to targets xEC
μν and inputs xPP

μν also to targets xEC
μν . Batch

normalization and a ReLU nonlinearity is applied to the hidden layer
and a sigmoid nonlinearity is applied to the output layer. The loss

function is

L=
X
μν2
batch

jjx̂EC
μν � xEC

μν jj2: ð7Þ

Training is performed over 100 epochs with batch size 128 using the
Adam optimizer with learning rate 10−4 and weight decay 10−5.

Hopfield-like model for CA3
Pattern storage. Our Hopfield-like model for CA3 stores linear com-
binations qμν of MF and PP patterns:

qμνi = ð1� ζ Þ � ðxMF
μνi � aMFÞ+ ζ � ðxPP

μνi � aPPÞ, ð8Þ

where ζ =0.1 is the relative strength of the PP patterns (Fig. 3A). The
subtraction of densities from each pattern is typical of Hopfield net-
works with neural states 0 and 191. The synaptic connectivity matrix is

Wij =
1

NCA3

X
μν

qμνiqμνj: ð9Þ

Pattern retrieval. Cues are formed from target patterns by randomly
flipping the activity of a fraction 0.01 of all neurons (Fig. 3B). This
quantity is termed cue inaccuracy; in Supplementary Fig. 3F, we also
consider cue incompleteness, which is the fraction of active neurons
that are randomly inactivated to form the cue. During retrieval, neu-
rons are asynchronously updated in cycles during which every neuron
is updated once in random order (Fig. 3C). The total synaptic input to
neuron i at time t is

giðtÞ=
X
j

W ijSjðtÞ+hiðtÞ, ð10Þ

where Sj(t) is the activity of presynaptic neuron j and hi(t) is an external
input. The external input is zero except for the cue-throughout
condition in Fig. 4, in which h(t) = σx for noisy MF cue x and
strength σ =0.2.

The activity of neuron i at time t is probabilistically updated via
the Glauber dynamics

P½Siðt + 1Þ= 1�=
1

1 + e�β½giðtÞ�θðtÞ� , ð11Þ

where θ is the threshold and β is inverse temperature, with higher β
implying a harder threshold. Motivated by theoretical arguments, we
define rescaled variables θ0 and β0 such that θ=θ0 � ð1� ζ Þ2aMF and
β=β0

=ð1� ζ Þ2aMF
41. Unless otherwise indicated, we run simulations for

10 update cycles, use β0 = 100, and use θ0 =0:5 to retrieve MF patterns
and θ0 =0 to retrieve PP patterns. The rescaled θ0 is the threshold value
illustrated in Fig. 4A and Supplementary Fig. 4A.

Retrieval evaluation. The overlap between the network activity S and
a target pattern x is

m=
1

NCA3að1� aÞ
X
i

Siðxi � aÞ, ð12Þ

where a is the density of the target pattern. This definition is also
motivated by theory41. The target pattern xPP

μ for PP concept μ is

xPP
μi =Θ

X
ν

xPPμνi � ϕ

" #
, ð13Þ

where ϕ is a threshold implicitly set by using winners-take-all to
enforce that xPP

μ has density aPP. The theoretical maximum overlap
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between the network and xPP
μ is the square root of the correlationffiffiffiffiffiffiffi

ρPP
p 41. Because this estimate is derived for random binary patterns in
the large network limit, it can be exceeded in our simulations.

To visualize S, we first recall that the inverse of a dense stored
pattern x with every neuron flipped can also be an equivalent stable
state33. Thus, we invert S if we are retrieving PP patterns at low θ and if
m <0. Then, we decode its EC representation by passing S through the
feedforward visualization network and binarizing the output with
threshold 0.5. Finally, we pass the EC representation through the
decoding layers of the image autoencoder.

See Supplementary Information for the determination of network
capacity with random binary patterns (Fig. 3H, I and Supplementary
Fig. 3G, H) and the definition of oscillation behaviors (Fig. 4C and
Supplementary Fig. 4B).

Experimental data analysis
General considerations. To calculate activity, we tabulate spike
counts c(r, ϕ) over spatial bins r (position or turn direction) and theta
phase bins ϕ, and we tabulate trajectory occupancy u(r,ϕ) over the
same r and distribute them evenly across ϕ. Activity as a function of
theta phase, the spatial variable, and both variables are respectively

f ðϕÞ=
P

rcðr,ϕÞP
ruðr,ϕÞ

, f ðrÞ=
P

ϕcðr,ϕÞP
ϕuðr,ϕÞ

, and f ðr,ϕÞ= cðr,ϕÞ
uðr,ϕÞ : ð14Þ

Information per spike as a function of theta phase is calculated by

IðϕÞ=
X
r

cðr,ϕÞ
cðϕÞ log2

f ðr,ϕÞ
f ðϕÞ , ð15Þ

where c(ϕ) =∑rc(r, ϕ)107. To perform sparsity correction for each neu-
ron, we generate 100 null-matched neurons in which the spatial bin of
each spike is replaced by a random value uniformly distributed across
spatial bins. We subtract the mean I(ϕ) over the null matches from the
I(ϕ) for the true data. To calculate the average difference in
information between sparse and dense phases, we first use f(ϕ) to
partitionϕ into sparse and dense halves. We then average the sparsity-
corrected I(ϕ) over each half, apply a ReLU function to each half to
prevent negative information values, and compute the difference
between halves.

See Supplementary Information for dataset preprocessing details.

Model prediction. For the example prediction in Fig. 5A, we choose
one concept from Fig. 2A and find 50 neurons that are active in at least
one MF example and one PP example within it. For each neuron, we
convert each active response to one spike and assign equal occu-
pancies across all examples. We calculate the information per spike
across MF examples and across PP examples using example identity ν
as the spatial bin r. These values are sparsity-corrected with 50 null-
matched neurons, and their difference becomes our example predic-
tion, associating MF encodings with sparse phases and PP with dense.

For the concept prediction in Fig. 6A, we find 50 neurons that are
active in at least one MF example and one PP example within any
concept. For each neuron, we convert each active response to one
spike and collect MF and PP concept responses by summing spikes
within each concept. We assign equal occupancies across all concepts.
We calculate the information per spike acrossMF concepts and across
PP concepts using concept identity μ as the spatial bin r. We then
proceed as in the example case to produce our concept prediction.

Linear track data. Single neurons in Fig. 6 are preprocessed from the
CRCNS hc-3 dataset as described in Supplementary Information24. To
identify place cells, we compute the phase-independent position
information per spike using 1 cm-bins across all theta phases, and we
select neurons with values greater than 0.5. For each place cell, we bin

spikes into various position bins as illustrated and phase bins of width
30∘. Since our prediction compares sparse and dense information
conveyed by the sameneurons,we require at least 8 spikeswithin each
phase value to allow for accurate estimation of position information
across all theta phases. To ensure theta modulation, we also require
themost active phase to contain at least twice the number of spikes as
the least active phase.

Place fields in Fig. 5 are extracted as described in Supplementary
Information. Processing occurs similarly to the whole-track case
above, except we do not enforce a phase-independent information
constraint, we use 5 progress bins, and we require at least 5 spikes
within each phase value. Phase precession is detected by performing
circular–linear regression between spike progresses and phases108,109.
The precession score and precession slope are respectively defined to
be themean resultant length and regression slope. Precessing neurons
have score greater than 0.3 and negative slope steeper than –72°/field.

W-maze data. Single neurons in Fig. 7A–H are preprocessed from the
CRCNS hc-6 dataset as described in Supplementary Information25. For
each neuron, we bin spikes into 2 turn directions and phase bins of
width 45∘. Since our prediction compares sparse and dense informa-
tion conveyed by the same neurons, we require at least 5 spikes within
each phase value to allow for accurate estimation of position infor-
mation across all theta phases. To ensure theta modulation, we also
require the most active phase to contain at least twice the number of
spikes as the least active phase.

Bayesian population decoding in Fig. 7I–L involves the same bin-
ning as in the single-neuron case above, and we enforce a minimum
spike count of 30 across all phases instead of a minimum for each
phase value. We do not ensure theta modulation on a single-neuron
basis. We consider all sessions in which at least 5 neurons are simul-
taneously recorded; there are 8 valid CA3 sessions and 25 valid
CA1 sessions. For each session, we compute the total activity across
neurons and turn directions as a function of theta phase to determine
the sparsest and densest half of phases (similarly to Eq. (14)). We then
compute activities fi(r, ψ) over each half, indexed by ψ∈ {sparse,
dense}, for neurons i and turn directions r. For each neuron, we rectify
all activity values below 0.02 times its maximum.

We decode turn direction during runs along the center arm using
sliding windows of width Δt = 0.5 s and stride 0.25 s. In each window at
time t, we tabulate the population spike count c(t, ψ) over sparse and
dense phases ψ. The likelihood that it arose from turn direction r is

pðcðt,ψÞjrÞ=
Y
i

pðciðt,ψÞjrÞ /
Y
i

f iðr,ψÞciðt,ψÞ
 !

exp �Δt
X
i

f iðr,ψÞ
 !

:

ð16Þ

This formula assumes that spikes are independent across neurons and
time and obey Poisson statistics110. We only decode with at least
2 spikes. By Bayes’s formula and assuming a uniform prior, the like-
lihood is proportional to the posterior probability p(r∣c(t, ψ)) of turn
direction r decoded from spikes c(t, ψ). Consider one decoding that
yields p(R) as the probability of a right turn. Its confidence is ∣2p(R)−1∣.
Its accuracy is 1 if p(R) > 0.5 and the true turn direction is right or if
p(R) < 0.5 and the true direction is left; otherwise, its accuracy is 0.

Machine learning with multilayer perceptrons
Dataset. We use theMNIST dataset of handwritten digits52. Each image
iα is normalized by subtracting the mean value and dividing by the
standard deviation across all images and pixels. In addition to its digit
class label, we randomly assign a set number. We train networks on a
subset of images from the train dataset. To test concept learning
through digit classification, we use all held-out images from the test
dataset. To test example learning through set identification, we use all
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train images corrupted by randomly setting 20% of normalized pixel
values to 0.

Single-task learning. We train a fully-connected two-layer perceptron
with a hyperbolic tangent (tanh) activation function applied to each
hidden layer and a softmax activation function applied to the output
layer. Each hidden layer contains 50 neurons, and the output layer
contains 10 neurons for digit classification and asmany neurons as sets
for set identification.

Let sα be the activations of the final hidden layer for image α. The
loss is composed of a cross-entropy loss function between recon-
structed labels ŷα and true labels yα, which are one-hot encodings of
either digit class or set number, and the DeCorr loss function:

L= �
X
α2

batch

XN�1

i =0

�
yαi log ŷαi + ð1� yαiÞ logð1� ŷαiÞ

�
+ λLDeCorr, ð17Þ

where

LDeCorr =
1
2

X
α 6¼β2
batch

PN�1
i =0 ðsαi � �sαÞðsβi � �sβÞ

h i2
PN�1

i=0 ðsαi � �sαÞ2 +Nϵ
h i PN�1

i=0 ðsβi � �sβÞ2 +Nϵ
h i : ð18Þ

We introduce ϵ = 0.001, which is scaled by the number of hidden layer
neurons N, to aid numerical convergence. Mean activations are
�sα = ð1=NÞ

PN�1
i =0 sαi. The DeCorr strength is λ; except for Supplemen-

tary Fig. 8A, B, we use λ =0 for the baseline case and λ = 1 for the
DeCorr case.

We train the networkusing stochastic gradient descentwith batch
size 50, learning rate 10−4, andmomentum0.9. In general,we train until
the network reaches > 99.9% accuracy with the train dataset. For
example, we use 40, 100, and 200 epochs respectively for digit clas-
sification and set identification with 10 and 50 sets.

In contrast to DeCorr, the DeCov loss function formulated to
reduce overfitting is

LDeCov =
1
2

XN�1

i 6¼j =0

X
α2

batch

ðsαi � �siÞðsαj � �sjÞ
2
4

3
5
2

, ð19Þ

where mean activations are now taken over batch
items: �si = ð1=NbatchÞ

P
α2batchsαi

53.

Multitask learning. We train a fully-connected two-layer perceptron
with a hyperbolic tangent (tanh) activation function applied to each
hidden layer. In Supplementary Fig. 8E, F, we also consider applying a
ReLU activation function to each hidden layer, or a ReLU to the first
hidden layer and no nonlinearity to the second. The final hidden layer
is fully connected to two output layers, one for digit classification and
the other for set identification. A softmax activation function is applied
to each layer. Each hidden layer contains 100 neurons, the concept
output layer contains 10 neurons, and the example output layer con-
tains as many neurons as sets.

The loss is composed of a cross-entropy loss function between
reconstructed ŷα and true yα digit labels, a cross-entropy loss function
between reconstructed ẑα and true zα set labels, and either the DeCorr

or HalfCorr loss function:

L= �
X
α2

batch

XN�1

i =0

�
yαi log ŷαi + ð1� yαiÞ logð1� ŷαiÞ

�

�
X
α2

batch

XN�1

i =0

�
zαi log ẑαi + ð1� zαiÞ logð1� ẑαiÞ

�
+ λLDeCorr=HalfCorr,

ð20Þ

where

LHalfCorr =
1
2

X
α 6¼β2
batch

PN�1
i =N=2ðsαi � �sαÞðsβi � �sβÞ

h i2
PN�1

i=N=2ðsαi � �sαÞ2 +Nϵ=2
h i PN�1

i =N=2ðsβi � �sβÞ2 +Nϵ=2
h i :

ð21Þ
Mean activations are �sα = ð2=NÞ

PN�1
i=N=2 sαi. The DeCorr/HalfCorr

strength is λ; we use λ = 1with a tanh activation function, λ =0.04with a
ReLU, λ = 2 with no nonlinearity, and λ =0 for the baseline case with
any nonlinearity.

We train the networkusing stochastic gradient descentwith batch
size 50 and learning rate 10−4. In general, we train until the network
reaches > 99.9% accuracy in both tasks with the train dataset. For
example, we use 100 epochs for the results in Fig. 8I, J.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All experimental data used in this study are taken from the Colla-
borative Research in Computational Neuroscience (CRCNS) hc-3
dataset contributed by György Buzsáki and colleagues24 and the hc-6
dataset contributed by Loren Frank and colleagues25. They are publicly
available at https://crcns.org/data-sets/hc. TheMNISTdataset52 used in
this study is available at http://yann.lecun.com/exdb/mnist. The Fash-
ionMNIST dataset26 used in this study can be found at https://github.
com/zalandoresearch/fashion-mnist. Source data are provided with
this paper.

Code availability
All network training and simulation code is available at https://github.
com/louiskang-group/kang-2024-examples-concepts.
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