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The major sites of synaptic change in the mammalian 
brain are dendritic spines (Fig. 1a), small protrusions that 
extend laterally from dendrites and that are the postsyn-
aptic sites of most excitatory glutamatergic synapses1–3. 
The spine is characterized by a bulbous head with a vol-
ume between 0.005 and 1 μm3, shaped by actin-​based 
scaffolds. The spine head contains a postsynaptic density 
(PSD) that anchors glutamate receptors and other sig-
nalling molecules to the postsynaptic membrane. The 
PSD, in turn, is juxtaposed across the synapse with a 
presynaptic axonal bouton. The spine head is connected 
to the dendritic shaft by a narrow neck with a diame-
ter of 0.1–0.5 μm and a length of 0.1–2.5 μm. There are 
estimated to be 100 trillion spines in the human cortex, 
vastly outnumbering the 175 billion synapses in the larg-
est deep neural networks in current-​use artificial intelli-
gence (AI)4,5. Thousands of dendritic spines decorate the 
dendrites of major neuron types in the brain, reaching 
densities of one to ten spines per micrometre and consti-
tuting 70% of synapses in the cortex. Dendritic spines are 
densest in principal (projection) neurons of vertebrates, 
but can be found in insects6,7 and even in nematodes8.

Spines are not fixed structures: new spines form 
while others are eliminated, and spines grow larger and 
smaller and change shape. Some of these dynamics are 
directly linked to major forms of synaptic plasticity 
such as long-​term potentiation (LTP) and long-​term 
depression (LTD) of functional connectivity. Although 
such changes have been reported in many synapses9,10, 
it is only at the spine synapses that synapse-​specific and 

weight changes lasting a day or so have been directly 
demonstrated. These dynamics, as well as many addi-
tional functional and structural properties of spines, are 
mediated by hundreds of gene products found at these 
minute synaptic specializations, subtle variations of 
which affect mental function. It follows that dendritic 
spines are involved in virtually all mental functions and 
in many mental disorders.

Recent progress in machine learning and AI is largely 
based on artificial neural networks (ANNs), whose 
architectures were inspired by, and share similarities 
with, those of the brain. ANNs are composed of feed-
forward or recurrently connected ‘neurons’, in which 
the ‘synapses’ connecting the neurons have tuneable 
weights (strengths). Typically, these weights are set dur-
ing a training phase in which errors (differences between 
the actual output and the desired output) are propagated 
from the output backward throughout the network (via 
‘backpropagation’). Although it is not clear whether this 
highly effective procedure is used in the brain, it has been 
suggested that it might be in some form11. Regardless, 
the synapse is a central, common denominator of ANNs 
and brains, the seat of fundamental mental functions 
in humans and animals. Although ANNs are radically 
simplified variants of their biological counterparts, 
lessons learned in this field might provide important  
frameworks for understanding brain function12.

Reinforcement learning (RL) is another biologically 
inspired machine learning field. In RL, agents explor-
ing interactive environments learn action models that 
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maximize cumulative rewards. In recent years, RL has 
been combined with ANN-​based deep learning, giving 
rise to the field of deep RL. Here too, insights gained 
might offer new frameworks and hypotheses for under-
standing brain function13. Although AI has surpassed 
human performance in well-​defined tasks5, current 
AI falls short in realistic, complex situations in which 
human (and often animal) intelligence excels. Notably, 
unlike in AI, the goals and algorithms underlying 
information processing in the brain are not explicitly 
designed. Instead, they are embedded in the physi-
cal implementations of neural circuits and synapses 

(‘nature’) and in the way these circuits and synapses are 
tuned through interactions with the environment (‘nur-
ture’). It is thus likely that much of the algorithmic rich-
ness embedded in synapses and neural circuits remains 
to be discovered14.

Here we attempt to provide a concise review of spine 
dynamics, their relationships with explicit and implicit 
brain ‘algorithms’, how these dynamics relate to key 
mental functions and certain mental disorders, and 
how these insights might further inform neuro-inspired  
AI. We first consider extrinsic dynamics — forms of 
spine enlargement and shrinkage that are dependent on 
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excitatory (and inhibitory) input or neuromodulation —  
and then consider intrinsic dynamics — activity- 
independent changes in spine sizes and numbers that 
are also amenable to neuromodulation. The cooperative 
actions of both extrinsic and intrinsic dynamics may 
enable functions that are still missing in contemporary 
AI, such as self-​management of memory systems, deep 
adaptability and creativity. Moreover, a full apprecia-
tion of these dynamics is key to understanding brain 
dysfunction and psychiatric disorders. We apolo-
gize for not being able to cite all relevant literature or 
cover additional frameworks and molecular mecha-
nisms owing to space limitations. For further reading  
on dendritic spines, we refer readers to several other 
reviews15–21.

Spine enlargement
Studying the function of single spines requires the 
ability to selectively stimulate specific spines (Fig. 1a,b).  
Commonly used optogenetic methods are not suita-
ble as they stimulate multiple targeted axons. Electro
physiological stimulation is even less specific as it excites 
multiple presynaptic fibre types, including glutamatergic 
(excitatory), GABAergic (inhibitory) and neuromodu-
latory fibres, creating complications addressed in later 
sections. By contrast, two-​photon glutamate uncaging 
releases glutamate within a femtolitre volume and thus is 
particularly suited for stimulating spine synapses along 
dendritic shafts22. Such glutamate uncaging has demon-
strated the tight correlation between the spine-​head 
size and the functional expression of fast AMPA-​type 
glutamate receptors (AMPARs), a major determinant 

of synaptic weight22,23. The results agree with electron 
microscopy studies showing that the spine-​head sizes 
are proportional to PSD area24 and AMPAR contents25,26, 
while a recent study reported a direct correlation 
between synaptic strength and ultrastructure27. These 
findings imply that structural alterations are inevitably 
associated with functional modifications. Moreover, 
given their nature, structural alterations are probably 
the most likely means for implementing long-​lasting  
functional modifications. These structure–function rela-
tionships also obviate painstaking and error-​prone esti-
mates of postsynaptic glutamate sensitivity (or functional  
AMPAR expression).

Dendritic spines have been demonstrated to undergo 
rapid enlargement within approximately 1 minute of 
repetitive glutamate uncaging28 (Fig. 1a) or glutamate 
uncaging repeatedly followed by postsynaptic spikes29–31 to 
induce spike timing-​dependent plasticity (STDP)32,33. These 
protocols result in effective opening of Ca2+-​permeable 
NMDA-​type glutamate receptors (NMDARs) and large 
increases in intracellular Ca2+ concentration. Importantly, 
spine enlargement induced by such protocols is associ-
ated with increased glutamate sensitivity28,32–34. Thus, 
spine enlargement presumptively constitutes the struc-
tural basis of LTP in spine synapses10,28. Consistent with 
many LTP studies, spine enlargement requires activation 
of Ca2+/calmodulin-​dependent kinase II (CaMKII)35–39 
and small GTPases40,41, which through activation and 
phosphorylation of many proteins (partly listed in 
Fig. 1c) lead to the polymerization of filamentous actin 
(F-​actin)16,18,42–45 (Fig. 1c).

Confinement of spine enlargement. Uncaging studies 
indicate that spine enlargement and LTP are confined to 
stimulated spines, as neighbouring spines did not show 
enlargement or shrinkage (neither LTP nor LTD)28,32,33,37 
(Fig. 1a). This enables independent modification of syn-
apses, similar to weight modification in ANNs. The abil-
ity to confine changes to single synapses is not trivial, 
given that hundreds of molecular species are involved in 
spine enlargement, and many of these have been shown 
to diffuse from spines to dendrites and among nearby 
spines44,46–49. Indeed, spine shrinkage readily spreads, 
as discussed below (Fig. 1b). Moreover, LTP leads to the 
selective activation of several key molecules, including 
CaMKII and small GTPases37,40,41,48,50 (Fig. 1c). The degree 
to which these molecules spread is determined by their 
diffusion and inactivation rates, which for some key 
molecules (for example, CaMKII and CDC42) effectively 
confine their activation to within approximately 1 μm of 
stimulated spines. For others, such as RAS, RHOA and 
RAC1, the situation is less clear, as confinement of spine 
enlargement is not well explained by their diffusion and 
inactivation rates18.

An alternative explanation for the confinement of 
spine enlargement relates to the presence of higher-​order 
molecular assemblies within spines, in particular the 
dense F-​actin networks that define and regulate spine 
morphology. As actin networks are primary targets of 
many LTP-​activated molecules, it is plausible that their 
steric properties and polymerization–depolymerization  
dynamics confine the activities of LTP-activated 

Fig. 1 | enlargement and shrinkage of dendritic spines. a | Two-​photon-​induced  
glutamate uncaging can be used to selectively stimulate long-​term potentiation (LTP)  
at a single synapse (in the absence of Mg2+ or spike timing-​dependent plasticity). This 
leads to enlargement and LTP of the stimulated synapse but not of nearby synapses.  
b | Two-​photon-​induced glutamate uncaging at a single spine in the presence of GABA 
(tonic or uncaged during a short time window) can be used to target a spine for shrinkage 
or elimination. However, shrinkage is not confined to the targeted spine and can ‘spread’ 
along the dendrite to affect neighbouring spines. c | Signalling cascades for spine 
enlargement and shrinkage. Large increases in intracellular Ca2+ concentration ([Ca2+]i) 
activate Ca2+/calmodulin-​dependent kinase II (CaMKII) (within about 1 second)39,70, 
resulting in the activation of a serine/threonine-​protein kinase, PAK, and the phosphoryl-
ation of many proteins, including LIM-​domain kinase (LIMK), slingshot (SSH) and cofilin, 
which are responsible for the stable enlargement of filamentous actin (F-​actin) networks, 
and are constituents of stress fibres (red shaded area). By contrast, moderate increases  
in intracellular Ca2+ concentration selectively activate calcineurin (in about 1 second)70 
but not CaMKII, leading to the dephosphorylation of SSH and cofilin. The encircled ‘P’ 
denotes protein phosphorylation. A lateral spread of cofilin induces shrinkage of neigh-
bouring spines. In addition to the global increases in intracellular Ca2+ concentration, 
Ca2+ nanodomains beneath the cytosolic mass of synaptic NMDA receptors (NMDARs) 
are necessary for synaptic plasticity37,58. The involvement of a small, representative subset 
of molecules in spine remodelling is more fully described in the main text. d | Stress fibres 
and adhesion complexes in a cell (left). The right-​hand schematic shows stress fibres and 
adhesion complexes whose molecular composition is similar to that of the enlarged, stable 
F-​actin networks at the spine base. Many of the proteins activated or phosphorylated by 
CaMKII are components of stress fibres in cultured cells. SSH bundles F-​actin, to which 
RHOA, phosphorylated LIMK, phosphorylated cofilin, myosin II, actin-​related protein  
2/3 complex (ARP2/3) and drebrin (not shown) bind. Protein 14-3-3ζ binds with these 
phosphoproteins. The fibres are anchored to the extracellular matrix via focal adhesion  
molecules, such as FAK and integrins. This supramolecular complex is referred to as a 
stress fibre and connects the extracellular matrix and the cytosol. Many of these proteins 
are requisite for LTP. PSD, postsynaptic density; VDCC, voltage-​dependent calcium channel.
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molecules in space and time. Spine actin networks share 
many similarities with other actin-​based structures, such 
as stress fibres, lamellipodia and filopodia, that shape 
and underlie motility in non-​neuronal (and neuronal) 
cells51–53. Furthermore, integrins have also been shown 
to be involved in LTP54 (Fig. 1d). Strikingly, many pro-
teins that regulate spine enlargement (such as RAC1, 
CDC42 and RHOA) also regulate actin dynamics and 
actin-​based cell motility in other settings on timescales 
of minutes51–57 (Fig. 1c,d).

One key molecule in this respect is cofilin. Cofilin 
binds F-​actin and severs F-​actin polymers when cofilin is 
dephosphorylated. Conversely, phosphorylation of cofi-
lin suppresses its binding and F-​actin-​severing activity 
(Fig. 1c), consequently allowing spine enlargement48,58. 
Although phosphorylated cofilin (p-​cofilin) is highly 
diffusive in dendrites, p-​cofilin generated during spine 
enlargement is observed to be trapped selectively in 
stimulated spines48, indicating that p-​cofilin is bound 
to higher-​order molecular complexes (Fig. 1d). In sup-
port of this view, during spine enlargement, F-​actin can 
rapidly (within approximately 1 minute) form a stable 
gel (the enlargement pool of F-​actin)44, which occa-
sionally (in about 20% of enlarged spines) flows out en 
bloc into the dendritic shaft, followed by the reversal of 
spine growth44, resulting in only transient enlargement. 
Conversely, if the F-​actin gel remains in the spine head, 
enlargement is long-​lasting, possibly because the gel 
clears space in the spine head, facilitating PSD growth 
and consolidation over the course of about 1 hour33,59. 
Thus, the rapid, independent and long-​term modifiabil-
ity of synaptic specializations relies on ubiquitous cellu-
lar mechanisms used by most living cells for shaping and 
rapidly modifying their structures (Fig. 1d).

Confined spine enlargement can last at least 
3–6 hours in vitro, and a fraction of newly generated or 
enlarged spines can last more than 2 months in vivo20,60. 
Spine enlargement can be efficiently induced in most 
small spines (more than 90%), although the extent of 
enlargement is highly variable among spines, even in 
young hippocampal in vitro preparations28,33,61. The 
variability is more prominent in the adult cortex, where 
spine enlargement occurred in only 20% of small spines 
even though similar uncaging protocols were used62. An 
interesting possibility is that this heterogenic amena-
bility to enlargement is a manifestation of the ‘cascade 
model’ of synaptic metaplasticity63 in which each syn-
apse exhibits a cascade of states with different levels of 
plasticity, connected by metaplastic transitions, thereby 
preventing overwriting of synaptic memory traces to 
make memory long-​lasting. Regardless, in vivo exper-
imental evidence points to the importance of cortical 
spine enlargement in motor memory, as selective optical 
‘undoing’ of the enlargement of approximately 400,000 
spines in the motor cortex associated with learning a 
specific motor task selectively erased learning acquired 
for that motor task64.

Spine shrinkage and pruning
Prolonged, low-​frequency stimulation of specific spines 
can lead to their shrinkage and pruning48,58,65,66. Here we 
discuss how and why such shrinkage spreads to other 

spines along the dendrite, the roles of inhibitory signal-
ling in this shrinkage and implications of these extrinsic 
dynamics.

Spreading of spine shrinkage and pruning. Unlike spine 
enlargement, spine shrinkage and pruning can spread 
to neighbouring spines, as far as 15 µm from the stimu-
lated spine58 (Fig. 1b). This is consistent with many studies 
reporting the spread of LTD31,62,67–69 and spine pruning66 
when an input fibre bundle is stimulated at a low fre-
quency. Notably, neighbouring spines that are stimulated 
with a protocol that induces spine enlargement are ‘pro-
tected’ against the spine shrinkage that may otherwise 
spread from neighbouring synapses58.

Spine shrinkage depends on Ca2+ flux through 
NMDARs (influx through dendritic voltage-​gated 
channels is not sufficient), which leads to moderate 
increases in intracellular Ca2+ concentrations sufficient 
to activate the Ca2+-​dependent phosphatase calcineu-
rin, but not CaMKII70 (Fig. 1c). Activation of calcineurin 
depends on Ca2+ nanodomains underneath the cytosolic 
openings of NMDARs58, as is the case with CaMKII in 
spine enlargement37 for synaptic specificity. Calcineurin 
is thought to dephosphorylate p-​cofilin, and by doing 
so, it activates the latter’s F-​actin-​severing ability (Fig. 1c), 
resulting in spine shrinkage48,58,71,72 (Fig. 1b). By diffusing 
to neighbouring spines, dephosphorylated cofilin acts as 
a spreading shrinkage factor48 shown to be necessary58,71 
and sufficient for spine shrinkage48. Spreading of spine 
shrinkage has been observed in the visual cortex of adult 
mice62, although it seems to be less common and more 
confined than spreading in hippocampal slices from 
young rats48,58. Notably, a form of spine shrinkage that 
depends on NMDARs, but not on ion flux through these 
receptors73, occurs in young but not adult animals74.

Whereas spine enlargement typically occurs within 
1 minute28,37,59,62 (Fig. 1b), spine shrinkage occurs on 
much longer timescales (for example, over 10–60 min-
utes)58,62,66,68. This difference probably reflects the rapid 
dynamics of actin polymerization involved in ini-
tial spine enlargement43,44 as compared with the slow  
dismantling of PSD scaffolds75.

Roles of inhibition in spine shrinkage and pruning. When 
postsynaptic spikes precede presynaptic stimulation, 
stimulated synapses will often undergo LTD29,31(Fig. 1b). 
As mentioned earlier, this depends on Ca2+ influx 
through NMDARs that elevate intracellular Ca2+ con-
centration to moderate levels only9,31 (Fig. 1c). Precisely 
timed activation of postsynaptic GABA type A receptors 
(GABAARs) could serve to restrict intracellular Ca2+ con-
centration elevations to such levels by shunting inhibition. 
Indeed, feedforward (and feedback) GABAergic neuron 
activity driven by glutamatergic fibre stimulation has 
been shown to be necessary for LTD induction69. In 
support of this finding, glutamate uncaging-​mediated 
spine stimulation paired with postsynaptic stimulation 
induced spine shrinkage only when increases in spine 
intracellular Ca2+ concentration were dampened by 
GABAergic inhibition (or intracellular calcium chela-
tion)58 (Fig. 1c). By contrast, when intracellular Ca2+ 
concentration increases were not suppressed, CaMKII 
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was activated and competed with calcineurin, and the 
shrinkage was abated58 (Fig. 1c). Thus, spine growth and 
shrinkage are determined by spine intracellular Ca2+ 
levels (Fig. 1c), and inhibitory neurons play a key role in 
determining these levels.

Extrinsic dynamics versus weight adjustments in ANNs. 
Extrinsic dynamics share similarities with synaptic 
weight adjustments in ANNs, but also differ from these 
substantially. In ANNs, weight adjustments are based 
on comparisons between computed network output 
and desired network output; errors at the output level 
are then ‘backpropagated’ and used to adjust synaptic 
weights in the entire network. Purely local rules, such 
as simple Hebbian learning, can enhance features in the 
input9,10,31,76 but cannot be used to solve a general task 
that requires information (feedback in some form) as 
to the manner by which local synaptic changes affect 
network output and ultimately behaviour. This obser-
vation indicates that purely local rules might not suffice 
to explain the role of extrinsic dynamics in behavioural 
learning. Indeed, global error signals might play critical 
roles (see the section entitled Reinforcement learning)11. 
Alternatively, backpropagation might occur indi-
rectly through feedback connections and circuit-​level 
organization11,77,78.

Other important differences between extrinsic dyna
mics in the brain and ANN synaptic weight adjustments 
also exist. ‘Synapses’ in ANNs can have positive or nega-
tive weights, whereas spine synapses are predominantly 
excitatory, hinting at the importance of inhibitory 
synapses79. Furthermore, extrinsic dynamics are asym-
metric: spine growth is rapid and spatially confined, 
whereas shrinkage is slow, is non-​local and can lead to 
pruning. Rapid, confined spine enlargement could help 
diversify downstream circuits (see the section entitled 
Reinforcement learning), whereas non-​local pruning  
(as a form of heterosynaptic plasticity) may help to remove 
inactive synapses, which synapse-​specific plasticity nor 
backpropagation enables11. These differences may be 
instrumental for circuit rewiring during critical periods 
in the course of development80, and in the ANN 
domain for finding sparsely connected subnetworks  
(see the section entitled Pruning and rewiring)81.

Reinforcement learning
RL is a machine learning approach in which agents 
explore interactive environments, receive feedback 
(reward) in response to selected actions and learn action 
models for maximizing cumulative rewards. RL82 was 
inspired by concepts developed in behavioural experi-
ments, in particular operant conditioning83. A key concept 
adopted in RL is the eligibility trace, with which agents 
(such as robots) involved in producing behaviours are 
sensitive to feedback for the effective detection of contin-
gencies between actions and rewards for a certain period. 
Such learned associations are later used to predict rewards 
and estimate the reward prediction errors (RPEs), 
the differences between expected and actual rewards. 
Substantial experimental work suggests that RPE sig-
nals might be encoded in the brain by the firing of mid-
brain dopaminergic neurons84–86 that densely innervate 

the striatum. In particular, these neurons innervate the 
nucleus accumbens (NAc; Fig. 2a) in the ventral stria-
tum, which is considered to be a major ‘reward centre’  
involved in classical conditioning and addiction86–88.

Dendrites of NAc spiny projection neurons (SPNs; 
also called ‘medium spiny neurons’) are decorated with 
spines that receive inputs from both glutamatergic and 
dopaminergic fibres (Fig. 2a). Dopamine activities are 
mediated by dopamine receptors, members of a fam-
ily of ~400 non-​olfactory G-​protein-​coupled receptors 
(GPCRs) expressed in the brain and that also medi-
ate activities of many additional, crucially important 
neuromodulators89. D1-​like family receptors (D1Rs) 
and D2Rs stimulate and inhibit adenylate cyclases (ACs), 
thus increasing and decreasing levels of intracellular 
cyclic AMP (cAMP), respectively. Compounds that ele-
vate dopamine concentrations can cause drug addiction, 
owing to excessive D1R activation88.

D1Rs and the eligibility trace. What might be the bio-
logical substrate of the eligibility trace? Although vari-
ous mechanisms have been explored theoretically (for 
example, see ref.90), experimental validation has proved 
difficult, mainly because methods based on electrical 
stimulation inevitably recruit both glutamatergic and 
dopaminergic fibres91. This difficulty was solved by use 
of two-​photon glutamate uncaging to selectively stimu-
late individual spines, and optogenetics to independently 
stimulate dopaminergic fibres34. In these experiments, 
performed in D1R-​expressing SPNs in mice NAc slice 
preparations, STDP protocols and timed dopaminergic 
stimulation were used to assess the effects of dopamin-
ergic input on spine enlargement (Fig. 2b). Dopamine 
was found to promote spine enlargement only when 
its release was triggered within a narrow time window 
(0.3–2 seconds) after the onset of glutamatergic input 
(Fig. 2c,d), which tracked the temporal profiles of intra-
cellular cAMP levels. These results are interpreted to 
indicate that increases in intracellular Ca2+ concentration 
associated with STDP prime Ca2+-​dependent AC (AC1), 
such that D1R-​induced activation of stimulatory G pro-
teins at the delayed reward time efficiently triggers cAMP  
synthesis92,93 (Fig.  2e). Increases in intracellular  
cAMP concentration lead to CaMKII disinhibition (via 
protein kinase A (PKA)), and thus repetitive condition-
ing summates to induce measurable spine enlargements 
within about 1 minute34,93, according to the molecular 
cascade shown in Fig. 2e. Moreover, similar time windows 
were also observed to determine the effects of noradren-
aline on spine size94, suggesting that these timing 
dependences may reflect the kinetics of conformational 
changes of AC95. Importantly, the timing of the dopamine 
sensitivity of spines (Fig. 2d) is similar to the minimum 
behavioural time window needed for reward condition-
ing measured in behavioural experiments96. Thus, the 
temporal features of the eligibility trace are embedded  
in the molecular cascades within spine synapses (Fig. 2e).

D2Rs and psychosis. D2Rs are a second class of dopa-
mine receptors of particular relevance to psychiatry, as 
they are the major targets of drugs used to treat psy-
chosis (including symptoms such as delusions and 
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hallucinations) in disorders such as schizophrenia, for 
example. Psychotic symptoms have been hypothesized to 
result from aberrant attribution of salience (the ‘salience 
misattribution hypothesis’)97,98. How dopamine causes 
salience misattribution, however, is largely unknown.

Several findings provide important pieces to this 
puzzle. First, as mentioned already, D2Rs inhibit AC 
(Fig. 2e). Second, dopaminergic neurons typically fire 
tonically at approximately 5 Hz and, following reward 
omission or punishment, cease firing for brief periods 
(0.4–2 seconds), resulting in transient ‘dips’ in extra-
cellular dopamine levels84,86,99,100. Such dips would be 
expected to be detected by D2Rs and lead to transient 
increases in intracellular cAMP concentration. Third, 
about half of SPNs selectively express D1Rs, whereas 
the others express D2Rs87,101,102. These SPN populations 
belong to the direct and indirect basal ganglia pathways, 
which are used in positive and negative control of corti-
cal activities (and behaviour), respectively (Fig. 2f). These 
three observations have led to the suggestion that the 
dopamine dip associated with reward omission (or pun-
ishment) suppresses behaviours due to D2R-​expressing 
SPN-​mediated negative reinforcement. Indeed, recent 
experiments, using two-​photon uncaging and opto-
genetics, showed that D2Rs detect dopamine dips as 
short as 0.4 seconds, which are followed by PKA and 
CaMKII-​dependent spine enlargement in D2R-​SPNs103 
(Fig. 2e–g). These findings are further supported by 
in vivo measurements of dopaminergic neuron activity, 
extracellular dopamine levels and PKA activity in SPNs 
during learning104 as well as a systems biology analy-
ses of D2R signalling93. Collectively, they suggest that 
dopamine has dichotomous effects on D1R-​expressing 
SPNs and D2R-​expressing SPNs (Fig. 2g) such that they 
store memories of reward and reward omission (or pun-
ishment), respectively, through cell type-​specific spine 
enlargement.

Reward conditioning via D1R-​expressing SPNs exhib-
its an unexpectedly high degree of generalization103,105. 
Intriguingly, dopamine-​dip detection by D2R-​expressing 
SPNs seems to be particularly important for discrimina-
tion learning; that is, the ability to discriminate between 
similar conditioning stimuli103. Thus, D2R-​expressing 
SPNs sculpt conditioning, tuning it to specific stimuli103. 
Consequently, impairment of discrimination learning 
might result in overgeneralized conditioning, giving 
rise to salience misattribution and misplaced emotional 
reactions. The dopamine generalization–discrimination 
hypothesis described here103 naturally explains how sali-
ence can be misattributed and subsequently trigger psy-
chotic symptoms97,98. Indeed, repetitive amphetamine 
treatment — which typically induces psychosis in humans 
and mice — impairs discrimination learning, whereas D2R  
antagonists can mitigate these impairments103. Collectively, 
these ideas and findings provide a physiological frame-
work for understanding psychosis and antipsychotics, 
with the discrimination task representing a rational 
behavioural diagnostic for evaluating psychosis and  
potential treatments in both humans and animal models.

Neuromodulator-​gated learning. Traditional RL typi-
cally involves a single RPE and a single target system. 
However, if traces engraved by reward and reward omis-
sion or punishment are stored separately, the possibility 
arises that they might also be activated differentially, in 
particular in different brain states shaped by neuromod-
ulatory influences89. This multiplexing of multivariate 
storage103 and complex readout modes might underlie 
the rich landscape of emotional influences character-
istic of mammals89,106. The advantages of multivariate 
reward signals were demonstrated in dichotomous RL 
machines, which were able to flexibly modulate risk pref-
erence of the agent107,108. Intriguingly, disturbances that 
caused noisy generalization and impaired discrimination 
led to aberrant behaviour108.

The coding of RPE by dopamine seems to apply only 
to part of the NAc and only in certain contexts103. Even 
though the same eligibility and dichotomous mechanisms 
probably hold in the dorsal striatum, dopamine may code 
internal, more subjective signals other than explicit sen-
sory signals for reward and punishment109,110. In addition, 
GPCR agonists other than dopamine may work on other 
timescales, with their operation acting as a three-​factor 
learning rule77,111, in which change in synaptic weight is 
described by a product of a presynaptic factor, a post-
synaptic factor and an additional third factor, such as 
a GPCR agonist. The three-​factor learning framework 
may provide versatile bases for neuromodulator-​gated 
learning in the brain and AI. Notably, more than one 
third of the 400 non-​olfactory GPCRs are targets of 
authority-​approved drugs, and a better understanding  
of neuromodulator-​gated learning, in general, will be key 
to advancing psychiatry and neuroscience-​inspired AI.

Intrinsic dynamics
So far we have described major features of extrinsic 
dendritic spine dynamics — that is, spine enlarge-
ment and shrinkage driven by activity, synaptic input  
and neuromodulation — and highlighted parallels and 

Fig. 2 | reinforcement plasticity of dendritic spines in D1 and D2 neurons.  
a–d | Two-​photon-​mediated uncaging of glutamate combined with optogenetic stimulation 
of dopaminergic inputs to spiny projection neurons (SPNs) expressing dopamine  
1 receptors (D1Rs) leads to spine enlargement only if the dopaminergic stimulation is 
performed 0.3–2 seconds after the onset of glutamatergic spike timing-​dependent 
(STDP) stimulation. This time window can be considered the lifespan of the synaptic 
eligibility trace. e | The signalling cascades for the modulation of spine enlargement  
by dopamine. Adenylate cyclase 1 (AC1) in the grey shaded region dictates the time 
course of the eligibility trace (e(t)). Sensory stimuli (for classical conditioning) or motor 
command activity (for operant learning) are translated into elevations of intracellular 
Ca2+ concentration ([Ca2+]i), which prime AC1 for subsequent activation by dopamine 
signalling. f | The optogenetically driven bursting and pausing (blue) of dopaminergic 
axons following STDP stimulation (red) of D1R-​expressing SPNs and D2R-​expressing 
SPNs for the control of behaviours. D1R-​expressing SPNs project mainly to the globus 
pallidus interna (GPi), whereas D2R-​expressing SPNs project indirectly to the GPi via the 
globus pallidus externa (GPe) and the subthalamic nucleus. All neurons in the direct and 
indirect pathways are inhibitory. g | Dichotomous regulation of spine enlargement at 
50 minutes after induction by dopamine concentrations surrounding D1R-​expressing 
SPNs and D2R-​expressing SPNs. **Statistically significant. A2AR, adenosine A2A receptor; 
AP, action potential; CAMKII, Ca2+/calmodulin-​dependent kinase II; cAMP, cyclic AMP; 
ChR2, channelrhodopsin 2; D1N, D1 neuron; D2N, D2 neuron; DA, dopamine; DARPP32, 
protein phosphatase 1 regulatory subunit 1B; Glu, glutamate; NMDAR, NMDA receptor; 
PDE, phosphodiesterase; PKA, protein kinase A; PP1, protein phosphatase 1; RGS, 
regulator of G protein signalling; VDCC, voltage-​dependent calcium channel; w/o, 
without. Parts a–d are adapted with permission from ref.34, AAAS. Part g is adapted  
from ref.103, Springer Nature Limited.
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Salience
The quality of being 
particularly noticeable  
or important.
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differences between these and modifications to synaptic 
weights implemented in ANNs. Dendritic spines, how-
ever, unlike synaptic weights in ANNs, also change spon-
taneously, in manners independent of activity61,112,113. 
The definition of activity independence is somewhat 
nebulous and differs subtly among studies. Here we refer 
to intrinsic spine dynamics as forms of remodelling not 
driven directly by evoked synaptic transmission at the 
spines in question. Within this framework, however, 
characteristics of intrinsic dynamics are still amenable 
to the influences of global features such as background 
activity levels or neuromodulatory tone. Although 
these intrinsic dynamics (Fig. 3a–d) are in all likeli-
hood associated with corresponding changes in syn-
aptic strength114, they were, until quite recently, mostly 
unheeded. We therefore describe these dynamics in 
some detail, and then consider their implications for the 

management of memory systems and their contributions 
to ‘heuristic’ algorithms.

Presence of intrinsic spine dynamics. Multiple studies 
have shown that blocking synaptic transmission and 
network activity only moderately suppresses the extent 
of spine-​size fluctuations61,115,116. Similarly, rates of spine 
formation and elimination are only weakly affected 
when activity is fully suppressed in vivo117. Indeed,  
a complete gamut of dendritic spine sizes and shapes 
is observed even when networks develop in the com-
plete absence of synaptic transmission118,119. Moreover, 
although blockade of key molecules that underlie extrin-
sic dynamics results in severe behavioural deficits120,121, 
only subtle changes in spine-​size distributions are 
observed122,123. The nearly universal shape of spine-​size 
distributions — unimodal, skewed and heavy-​tailed124,125 
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(Boxes 1–3) — emerges even in networks that never 
experienced any activity whatsoever61,116. Intrinsic 
spine-​size fluctuations account for more than 50% of 
the size changes that individual spines undergo in active 
networks115,126 and occur independently of neighbouring 
spine dynamics61.

Mechanisms of intrinsic dynamics. Intrinsic dynam-
ics have at least two components. The first is a rapid 
component (Fig. 3b) mediated mainly by continuous 
reorganization of the actin scaffold28,127 that does not 
strongly affect PSD size but does seem to drive spine 
‘morphing’ and glutamate receptor dynamics over times-
cales of minutes75,128. The second component involves 
changes in PSD sizes over timescales of many hours75 
and encompasses the entire range of spine sizes115,129 
(Fig. 3c,d). The latter dynamics seem to be driven by 
the continuous binding, unbinding and interchange of 
PSD molecules116,130 (over a typical timescale of several 
hours)47,75 and their metabolic turnover (over a times-
cale of many days131). These dynamics also depend on 
the extracellular matrix15,117 and interactions with motile 
microglia and astrocytes132. Comparable molecular 
dynamics probably drive size fluctuations in presynap-
tic specializations75, as well as postsynaptic specializa-
tions of GABAergic synapses133. Thus, it would seem that 
intrinsic dynamics are inevitable by-​products of ongoing 
biological processes.

Quantification of intrinsic dynamics and weight dis-
tributions. Despite this complexity, multiple studies 
demonstrate that measurement of a single parameter — 
spine size — provides a good approximation of intrinsic 
dynamics, quantitative explanations of underlying phe-
nomena and insights concerning their consequences. 
Moreover, these studies show that size dynamics can be 
captured surprisingly well by very low parametric pro-
cesses that are essentially stochastic61,116,129,134,135. Details 
differ somewhat among studies, but they can be generally 

characterized as stochastic processes that have drift and 
diffusion terms (Box 3 figure parts a–c). Importantly, 
these models account quite accurately for the experi-
mentally observed stationary, unimodal, skewed and 
heavy-​tailed distributions of synaptic sizes (Box 3 figure 
part d), which peak at values lower than the population 
mean (Box 3). This skewed shape can be attributed to the  
observation that the diffusion term (which describes 
the magnitude of size fluctuations) scales with synaptic 
size61,134 (Box 3 figure part b; Fig. 3c,d).

More quantitatively, the standard deviation of size 
fluctuations σ(w) is approximately proportional to the 
momentary synaptic weight, w, or more precisely to 
spine surface or PSD area116,135. Thus, relatively large 
spines occasionally make large excursions in size such 
that they grow even larger (Fig. 3d), whereas small 
spines make smaller excursions, and consequently tend 
to change less and accumulate (Box 3 figure part d). 
This dependence of size fluctuations on momentary 
size might be related to multiplicative synaptic change 
rules134 or to continuous, noisy multiplicative downscal-
ing of synaptic sizes129. At a more detailed level, it might 
be explained by the dependence of molecular dynam-
ics on surface area135 or the cooperative binding and 
unbinding kinetics of synaptic molecules130.

The presence of a fixed point (FP) in the drift 
component of the aforementioned stochastic pro-
cesses has important implications. First, it implies 
that newly formed spines, which tend to be particu-
larly small114,115,136,137 (that is, smaller than the FP; Box 3 
figure part c), will tend to grow larger. Second, it implies 
that synapses with sizes greater than the fixed point 
will tend to become smaller. Both tendencies are due 
to the negative slope of the drift component (Box 3 
figure part c) in the absence116 and presence of ongo-
ing activity61,115,116,129,134,135,138,139. Consequently, synaptic 
weight distributions are confined (in a quasi-​lognormal 
manner; Box 3) to mostly below about 1 μm3, regardless 
of the details of the drift term. Thus, intrinsic dynam-
ics can serve to normalize synaptic weights61,116,135,140,141. 
Notably, most cerebellar Purkinje cell spines are rela-
tively large24, suggesting that FP is large in Purkinje cells, 
while it is set to lower values in other neurons, possibly 
for reasons described later.

The stochastic models of size fluctuations described 
above also account for the rate of spine elimination 
observed in experiments61,116, which can be calculated 
by counting changes in the number of spines that hit 
the detection threshold volume (for example, 0.02 μm3; 
Fig. 3a) over a measurement interval61,135,141. Indeed, the 
life expectancy of small spines has been consistently 
reported to be shorter than that of large spines61,137,142–144. 
In this sense, small spines are less persistent than large 
spines simply because the former are closer to the 
pruning boundary115,116.

Rewiring via dendritic filopodia. The elimination of 
(small) spines is continually matched by the formation 
of new (small) spines (Fig. 3e), at typical rates of a few 
percent per day in the cortex20,145 and about 10% in the 
hippocampus61,144,146. Although these rates are affec
ted by many forms of learning and external stimuli  

Fig. 3 | intrinsic dynamics and rewiring of dendritic spines. a | Transitions of spines 
among the three categories. Nascent spines without stable presynaptic partners are 
referred to here as ‘filopodia’ (F). Spines with small (S) or large (L) heads are connected  
to presynaptic partners. They may carry working memory and long-​term memory, 
respectively (see the main text). Note that transition from F to S might involve a switch  
in the spines’ presynaptic partner, further limiting the lifetime of specific connections60,61. 
b | Spontaneous fluctuations of spine-​head sizes over a 2-​hour period. Spine-​size 
fluctuations are proportionally greater in larger spines. Over these short timescales,  
sizes fluctuate around their mean values due to filamentous actin (F-​actin) dynamics.  
c,d | Spontaneous fluctuations over days in the presence of an NMDA receptor inhibitor, 
APV, for initially small spines (c) and large ones (d). Most small spines stay in the same 
category, whereas some become bigger or are eliminated. Large spines show proportionally 
large fluctuations. e | Rewiring of synaptic connections during spine pruning and generation, 
which occurs for 1–2% of spines per day even in the absence of spiking activity, as 
compared with 1–8% in active networks60,117,210. f | Semilogarithmic plot of spine-​size 
distributions fz with the logarithm of synaptic weight z = log w. Most spines are small 
(black, S), but an additional large peak (grey, L) can be seen in certain preparations or in 
the artificial neural network simulation141 only after learning that results in the formation  
of cell assemblies. We use the natural logarithm, and z = –4 corresponds to w = 0.018 μm3. 
The L peak (at z = –1.4) in the semilogarithmic plot is introduced by the coordinate 
transformation from w to z182,193,194,211. By the same token, the occurrence of the smallest 
spines and spine genesis or pruning (transition between S and F) may seem to occur  
less frequently than they actually do (see Boxes 1–3). Part b adapted from ref.28, Springer 
Nature Limited. Parts c,d adapted with permission from ref.61, Society for Neuroscience.

Drift
The averaged change of a 
parameter in a certain period. 
In the general case, the  
drift, μ(w), is dependent on  
the current value of the 
parameter w.

Diffusion
The standard deviation of  
a parameter in a certain 
period. In the general  
case, the diffusion, σ(w), is 
dependent on the current 
value of the parameter w.
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(for example, see refs60,64,117,147–150), spine formation and 
elimination continue at surprisingly high rates even 
when action potentials and Ca2+ entry to neurons are 
blocked117,137, suggesting that spine formation is medi-
ated in part by intrinsic dynamics. New formations 
include dendritic filopodia and transient spines, (rela-
tively) short-​lived protrusions that extend and retract 
from dendrites, forming ephemeral contacts with nearby 
axons. A fraction of these formations occasionally evolve 
into bona fide synaptic connections within hours to 
days, facilitated by learning-​associated stabilization and 
enlargement20,148,151–153. Filopodia and transient spines 
define overlapping ‘capture volumes’ around dendritic 
shafts154,155 within which dendrites can potentially 
establish connections with three or four nearby axons 
within approximately 6 μm (refs156–158). This mode of 
synapse formation undoubtedly contains an important 

random, exploratory component and thus a route for 
activity-​independent ‘rewiring’ of neuronal circuitry 
(Fig. 3e). Note, however, that spinogenesis might also 
occur in a targeted fashion towards neurotransmitters 
or neurotrypsin secreted by active axons159,160.

The formation of filopodia and spines is also regu
lated by broadly acting biological signals related to 
physiological and pathological processes. For exam-
ple, spine genesis and pruning are affected by cor-
ticosteroid and sex steroid hormones161–164, linking 
stress, circadian rhythms and reproductive cycles, 
among other factors, to spine dynamics. Likewise, the 
anaesthetic ketamine has been shown to drive spine 
genesis, possibly explaining its slow-​onset, long-​term 
antidepressant effects in the mouse prefrontal cortex165. 
Intrinsic spine dynamics are also affected by multiple 
neuromodulators, including canonical ones such as 
acetylcholine166. Moreover, mounting evidence points to 
the importance of spine generation in conferring resil-
ience to Alzheimer disease167. Collectively, these find-
ings highlight the importance of intrinsic and extrinsic 
dynamics to network rewiring (Fig. 3a,e), and, in turn, 
its importance for brain function, and potentially for 
novel ANN algorithms (see the section entitled Pruning 
and rewiring).

Spine dynamics and memory management
Humans can recall an enormous number of events that 
occurred in the preceding few days — places we visited, 
people we met and much of what was said. Such mem-
ories are essential for executive functions in daily life. 
Eventually, however, most of these memories are lost, 
and only a small fraction persists beyond a few days. 
Memories that do persist, however, tend to be retained 
for longer periods, such that forgetting is characterized 
by an ever-​decreasing rate of memory decay168, as orig-
inally observed more than a century ago169. To date, the 
roles of intrinsic spine dynamics in memory manage-
ment and decay have rarely been considered. In the fol-
lowing sections, we point to potential ties between these 
phenomena.

Storage of new and working memories in small spines. 
Extensive evidence indicates a central role of small 
spines in the storage of new memories2,170. First,  
small spines most frequently show rapid spine enlarge-
ment following glutamate uncaging28,33,62, natural61 and 
synchronous activity115. Even after their enlargement 
(by as much as 50%)32,33,62, they tend to remain rela-
tively small (Fig. 1a). The precise timing of the onset of 
enlargement is difficult to measure, but can be less than 
10 seconds from uncaging28. Second, as evident from the 
skewed shape of spine-​size distributions (Box 3), most 
dendritic spines are small with potentially huge storage 
capacity. Small spines could account for about 10 TB of 
memory if we attribute one bit to one spine, because 80% 
of 100 trillion spines are small (Fig. 3f). Thus, intrinsic 
dynamics, by giving rise to these skewed distributions 
(Box 3), produce extensive capacity for new memory stor-
age. Third, because small spines are close to the pruning 
boundary, their life expectancies are short, congruent  
with the short lifetimes of most new memories168.

Bit
A binary digit. The smallest 
unit of measurement used  
to quantify computer data.

Box 1 | Dendritic spines in schizophrenia

schizophrenia is characterized by positive symptoms (such as delusions and 
hallucinations), negative symptoms (such as anhedonia and lack of motivation) and 
cognitive symptoms19,212. analysis of many mice lacking or harbouring mutations in genes 
implicated in schizophrenia has revealed that synaptic plasticity is often impaired212. 
impairments in long-​term potentiation may account for working memory deficits  
and therefore represent a possible underlying mechanism of schizophrenia cognitive 
symptoms212,213. Notably, spine loss reported in individuals with schizophrenia seems to 
apply mainly to small spines173,174, in contrast to observations in individuals with autism 
spectrum disorder (Box 2). the same tendency was found in mice harbouring mutations 
detected in people with schizophrenia123,214, for example, in calcineurin B (Cnb)-​knockout 
(KO) mice (see the figure)123, which also show impairments in long-​term depression  
and working memory215. these observations suggest that small spines may have key  
roles in working memory, which may be impaired by defective spine enlargement or 
reductions in small-​spine numbers (see the figure). if so, the functional outcome of such 
mutations is probably severer than implied by the subtle effects on size distributions  
(in common with autism spectrum disorder models).

Both positive and negative symptoms of schizophrenia may reflect impairments in 
sensitivity to dopamine: positive symptoms (also called ‘psychotic symptoms’) may result 
from a disrupted ability to detect dopamine dips (see the main text), which is extremely 
sensitive to either increases in baseline dopamine concentrations or genetic mutations 
affecting spine enlargement212, either of which can prevent discrimination learning. 
impairments to spine enlargement may further contribute to the negative symptoms  
of schizophrenia by impairing reward-​based learning via striatal dopamine 1 receptor-​ 
expressing spiny projection neurons216. thus, both positive and negative symptoms  
might be attributable to the dichotomous regulation of spine enlargement by dopamine 
(Fig. 2f,g). **statistically significant. wt, wild type. Figure reproduced with permission 
from ref.123, elsevier.
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Further evidence for this reasoning can be found in 
the observation that a shift towards small spine sizes 
in Shank1-​knockout mice (an animal model of autism 
spectrum disorder) is associated with enhanced acquisi-
tion of working memories and new memories171. Strikingly, 
in these same animals, long-​term memory preserva-
tion was impaired, in line with the predicted effects of 
reductions in the levels of SHANK1 (SH3 and multiple 
ankyrin repeat domains protein 1), a PSD molecule, 
on intrinsic spine dynamics and synaptic tenacity116. 
Indeed, small spines are prevalent in individuals with 
autism spectrum disorders172 (Box 2). By contrast, the 
numbers of small spines are reduced in individuals with 

schizophrenia173,174, in aged rhesus monkeys175 and in 
calcineurin B-​knockout mice123 (Box 1), all of which tend 
to exhibit deficits in working memory.

Memory persistence via multisynaptic connections. 
Intrinsic dynamics may seem to challenge the stabil-
ity of spine-​based memory encoding79,113. Their func-
tional consequences, however, might be dampened 
by connections formed of multiple synapses113. More 
quantitatively, if a connection is based on N synapses, 
each with a weight of w and variance of σ2, and given 
that the intrinsic fluctuations of individual synapses in 
the connection are uncorrelated61, the total connection 
variance will be Nσ2w2, as compared with N2σ2w2 for a 
single synapse with the weight Nw (Box 3 figure part b). 
In this sense, compound connections that are based on 
multiple (weak) synapses are stabler than connections 
based on single strong synapses. Moreover, the stability 
conferred by such compound connections might extend 
beyond connection strength to connection persistence, 
as suggested recently176,177. Compound synapses (involv-
ing two to six synapses) are commonly found among 
connected cortical neurons178, seem to occur more than 
expected by chance179 and, given spine-​size distribu-
tions, are likely to be composed primarily of multiple 
small spines. As might be expected, synapse remodelling 
within compound connections is partially correlated126 
as are synaptic sizes within such connections126,179–183. 
Notably, new spines formed following task learning 
are frequently added to existing connections between 
neurons136,149,184,185.

The advantage of multiple synapses might also 
apply for synapses from different presynaptic neu-
rons whose activities are correlated177. Along this line, 
recent studies186,187 reported the enrichment of synapses 
receiving inputs from co-​active neurons, and the func-
tional predominance of synapse multitude over synapse 
strength, indicating that populations of co-​active syn-
apses might be both very large and functionally impor-
tant. Thus, N in the aforementioned description might 
be huge as well. Indirect support may also be found in an 
estimate of spine numbers affected by motor task learn-
ing, which are, as mentioned earlier, in the hundreds of 
thousands in the motor cortex alone64.

Memory persistence through reliance on large spines. 
Large spines, owing to their remoteness from the prun-
ing boundary, are likely to be more persistent. Moreover, 
it has been speculated that such spines, the heavy tail of 
spine-​size distributions, are particularly important for 
network function188–190 (but see ref.187). For example, the 
strongest 25% of connections are responsible for 75% of 
cortical ocular dominance191. This idea faces two chal-
lenges, however. First, owing to the positive-​feedback 
nature of Hebbian-​like synaptic plasticity, ongoing net-
work activity would lead to runaway activity due to the 
synaptic strengthening it entails and, consequently, to a 
non-​physiological excess of large synapses192. Second, as 
intrinsic dynamics scale with synaptic size, the largest 
and most functionally important synapses would also be 
expected to fluctuate the most. Both challenges might  
be partially resolved by intrinsic dynamics, however. 

Working memories
Information stored in an 
accessible state for use in 
complex mental tasks.

Box 2 | Dendritic spines in autism spectrum disorder

individuals with autism spectrum disorder (asD) show early-​onset abnormalities in 
communication and behaviour and often exhibit epileptic brain activity19,217. although the 
causes of asD remain a topic of intense research, a common co-​morbidity is intellectual 
disability. early studies reported particularly small spine sizes (spine dysgenesis) in the 
brains of individuals with various intellectual disabilities172. in Fmr1-​knockout mice,  
a model of fragile X syndrome, which is often associated with asD, spine dysgenesis is 
often less obvious (see the figure)135. By contrast, rates of spine turnover (genesis and 
pruning) are strikingly increased (twofold to threefold higher) compared with those  
in control animals117,171,218–220. these increases in spine-​turnover rates are not affected  
by blockade of spikes and NMDa receptors in a fragile X syndrome mouse model117, 
suggesting that they reflect exaggerated intrinsic spine dynamics. the fluctuations were 
directly measured in Fmr1-​knockout mice, and the amplitudes were larger, in line with 
higher turnover rates and the smaller spine sizes135. this demonstrates that even subtle 
changes in spine-​size distributions might reflect severe impairments in the selection  
of synapses.

Consistently, proteins crucial for spine structure and function, such as neuroligins, 
sHaNK proteins (sH3 and multiple ankyrin repeat domains proteins; also known as 
prosaPs), fragile X mental retardation protein (FMrP), methyl-​CpG-​binding protein 2 
(MeCP2) and cell adhesion molecules are implicated in asD19, in line with the idea that 
asD might stem in part from impaired synaptic tenacity221. the shorter lifetimes of spines 
would be expected to give rise to slower acquisition of long-​term memory141,222 and this 
may manifest itself as spine dysgenesis. Moreover, a compensatory increase in synaptic 
connections involved in memory functions may contribute to the epilepsy141 often found 
in individuals with asD217. thus, schizophrenia (Box 1) and asD may be ascribed to 
preferential impairments in extrinsic and intrinsic synaptic dynamics, respectively223 
(Fig. 3a).

it is worth emphasizing that mental disorders are not discrete entities, and are better 
thought of as a spectrum224. in particular, owing to diagnostic criteria, many different 
early-​onset communication disorders are often classified as asD, irrespective of the 
cause. For example, symptoms related to mutations in plasticity-​related molecules such 
as synaptic ras GtPase-​activating proteins225 and Ca2+/calmodulin-​dependent kinase 
iiγ226 are diagnosed as asD because of their early onset. KO, knockout; wt, wild type. 
Figure adapted from ref.135, CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/).
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First, as explained earlier, intrinsic dynamics confine 
synaptic size distributions, effectively normalizing them 
and preventing runaway plasticity116,140,141. Moreover, 
the normalization process can adjust these distributions 
according to global features such as overall activity lev-
els or neuromodulatory tone113,115,116,129,139. This normal-
ization process is effective only if extrinsic and intrinsic 
dynamics accumulate over time to a similar magnitude, 
irrespective of the kinetics of their elementary processes. 
Second, under certain assumptions, combined intrinsic 

and extrinsic dynamics can create a separation point 
between large and small synapses that minimizes their 
interconversion141. In this model, this division is predicted 
to manifest itself as a secondary peak in spine-​size distri-
butions, particularly in semilogarithmic plots193 (Fig. 3f), as 
supported by several studies of synapse ultrastructure182,194. 
These findings hint that the brain might effectively use 
two ‘representative’ spine sizes, echoing older suggestions 
regarding binary synaptic states195 and the utility of binary 
synapses in high-​performance ANNs196.

Brownian motion
Random movement of 
microscopic particles 
suspended in liquids resulting 
from the effect of molecules  
of the surrounding medium.

Ornstein–Uhlenbeck 
process
A type of stochastic process 
whose stationary distribution  
is normal (Gaussian).

Black–Scholes model
The most popular stochastic 
differential equation in financial 
economics to estimate the 
changing value of an option 
over time.

Box 3 | stochastic models of dendritic spines

assuming synaptic weight, w, fluctuates from w(t) to 
w(t + Δt), the fluctuation can be approximated by the 
normal distribution with a mean (μ) and a standard 
deviation (sD; σ) (see the figure, part a). the general 
case, in which the mean and sDs are functions of w 
(rather than constants), gives rise to a stochastic 
differential equation (sDe)227:

σ= +μw w t w Bd ( )d ( )d ,t

where Bt is Brownian motion, μ(w)dt is the drift term  
and σ(w)dBt is the diffusion term. Note that both μ and  
σ depend on w (see the figure, parts b,c). 

the dynamics of spines determine the stationary 
weight distributions, f(w) (see the figure, part d). this 
dependency was explored independently by three 
groups (colour coded in figure parts b–d): dark blue61, 
light blue116,129 and red134. as can be seen in parts b,c of 
the figure, all studies point to the conclusions below. 
First, the sD, σ(w), is approximately proportional to the 
spine size, yielding a multiplicative noise term (σwdBt) 
(part b of the figure), which gives rise to skewed and 
stationary weight distributions (part d of the figure).  
By way of contrast, if this term is constant (as in an 
Ornstein–Uhlenbeck process (OuP) in part b of the 
figure), the stationary distribution is normal and not 
skewed (not shown). second, the drift term, μ(w), has a 
negative slope, crossing the w axis at FP (part c of the 
figure), which would be a stable fixed point in the 
absence of the diffusion term. Because of this drift term, 
the peak of the distribution is shifted from 0 to the 
positive weight of about 0.1 μm3, although not exactly at 
FP. a very similar picture emerges when the dynamics 
are modelled as a Kesten process, in which size changes 
are given by a drift term (as in part c of the figure, light 
blue line) with a stochastic slope and offset129 (also 
described by an sDe as below)116. when the slope is 
negative, spine distributions are closer to lognormal 
(quasi-​lognormal) distributions than to power-​law 
distributions (the latter having heavier tails; not shown), 
and spine sizes are constrained to mostly below about 
1 μm3 (part d of the figure). if the drift term instead  
has a positive slope (part c of the figure, grey line), the 
Black–Scholes model (used for modelling stock prices 
in financial markets, for example) emerges, predicting a 
power-​law stationary distribution (not shown)227. all these distributions are heavy-​tailed; that is, they decay more slowly 
than do exponential distributions. the three lines in parts b–d of the figure are based on theories from refs61,116,134. in parts 
b,c of the figure, the theories have been expressed in the standard sDe formalism shown below for comparison. the 
parameters of the equations have been modified to emphasize similarities of the resulting stationary distributions in part d 
of the figure. the relevant equations are shown below:

Geometric OuP (dark blue): = − . − . + . + . .w w t w Bd (0 1 0 02)d (0 2 0 01)d t

Kesten (light blue): = − . − . + . + . .w w t w Bd (0 06 0 011)d 0 059 0 0005d t
2

Lognormal (red): = − . + . + . .w w w w t w Bd (0 11 0 08 log )d 0 29 d t

Figure adapted with permission from ref.116, society for Neuroscience.
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Synapses and learning algorithms
The preceding sections indicate that intrinsic dynamics 
effectively give rise to a ‘self-​managing’ memory system. 
Synapses, however, are not merely memory elements 
or tuneable parameters that change neural network 
function: they also embody the ‘learning algorithms’ 
that drive the tuning, the processes that implement the 
brain’s ability to learn from experience and handle new 
challenges. Extrinsic dynamics, which can be described 
as Hebbian learning, RL and three-​factor learning, 
clearly constitute learning algorithms. Here we argue 
that intrinsic dynamics also give rise to important ‘heu-
ristic’ learning algorithms that might confer organisms 
and possibly ANNs as well with significant adaptive 
properties.

Synaptic weight noise. The importance of synaptic weight 
‘noise’ in the context of ANN training is well established, 
as explained below. ANNs are typically trained by mini-
mizing a loss function that quantifies their performance. 
Specifically, in each training step, a change is calculated 
for each synapse such that in the next step the overall 
loss (effectively, the difference between the actual result 
and the desired result) will be lessened and performance 
will be increased. Consequently, with each step, synaptic 
weights move ‘downhill’ along the loss function gradi-
ent. In the stochastic gradient descent method197, the loss 
function is evaluated using a subset of training samples. 
Consequently, synaptic weight changes do not strictly 
follow the gradient (which would be computed using 
all samples) but fluctuate according to the (randomly 
chosen) subset. The fluctuations improve learning by 
allowing synaptic weights to escape ‘saddles’ of the loss 
function in which learning slows down owing to shallow 
gradients198. The fluctuations also alleviate overfitting by 
regularizing networks (that is, imposing more-​general 
solutions by focusing on global features of the loss func-
tion)199. Moreover, multiplicative weight noise (typical 
of intrinsic dynamics; Box 3 figure part b) might further 
improve learning and generalization by narrowing the 
synaptic weight search space200. Weight noise might also 
provide a means to prepare for and cope with unforeseen 
challenges. For example, spine-​size fluctuations might 
be used to sample synaptic weights from the posterior 
distribution (that is, the probability distribution of syn-
aptic weights to reproduce observed sensory inputs) for 
Bayesian network inference201. Intrinsic dynamics can be 
combined with RL to obtain a distribution of changes in 
synaptic weights proportional to the expected reward202. 
More generally, by driving random weight changes and 
rewiring, intrinsic dynamics might produce new solutions 
where none existed before, giving rise to the elusive feature 
known as ‘creativity’. Thus viewed, creativity may be con-
sidered an emergent feature of trial-​and-​error rewiring —  
a brain-​specific instantiation of the ubiquitous biological 
principle of diversification and selection115.

Continuous network initialization. Intrinsic dynamics 
mediate the continuous production of small spines and 
stochastic resetting of their sizes. This continual intro-
duction of randomly weighted synapses into ‘trained’ 
networks might be viewed as a form of continual 

initialization. In this regard, biological networks differ 
greatly from ANNs, which are initialized once and then 
trained. This interleaving of initialization and training in 
the brain might be viewed as a necessary adaptation to 
a non-​stationary world. How this might be done selec-
tively, without impairing previously acquired knowledge 
or causing catastrophic forgetting203 is currently an open 
question (for example, see refs204,205).

Pruning and rewiring. Densely connected ANNs, first 
initialized and then trained, were recently shown to 
contain sparsely connected subnetworks comprising 
less than 10% of the original numbers of connections, 
referred to as ‘winning ticket’ (WTk) networks. These 
WTk subnetworks can be trained faster, perform and 
generalize better and are more robust to noise than their 
parent networks81,206,207. The biological principles of syn-
aptic generation and rewiring can also be used in discov-
ering such WTk networks206,207. WTk networks might 
be represented in biological networks that show spine 
formation within overlapping ‘capture volumes’ (see 
earlier)154,155 during development, as well as spreading 
of spine shrinking (also described earlier) — processes 
that might find their way into AI as well.

Notably, human brains harness 100 trillion spines,  
a number generally maintained by balanced spine genesis  
and pruning. By contrast, contemporary AI networks 
contain up to 175 billion connections4 and already 
require efforts to radically reduce these numbers to less 
than 10%81,206,207. As hardware limitations for AI are mit-
igated in the future, ANNs will also scale up and may 
adapt sparse information coding using spikes as in the 
brain208,209 for energy efficiency. In such large and dis-
tributed networks, pruning can be of central importance. 
Consequently, using pruning and rewiring for discover-
ing suitable sparse subnetworks within combinatorially 
huge possibilities will become of paramount importance, 
as they seem to be in the brain.

Conclusions
Evidently, dendritic spine dynamics are not merely 
passive manifestations of memory embedding pro-
cesses: they are complex biological processes that give 
rise to implicit algorithms at cellular and system levels. 
Impairments in these processes can result in psychiat-
ric symptoms, such as psychosis, impaired learning and 
possibly complex syndromes such as autism spectrum 
disorder. Synaptic dynamics — such as non-​local prun-
ing, regulation by inhibitory neurons, dichotomous and  
multivariate RL, management of memory systems  
and heuristic algorithms — might also inspire new 
machine learning algorithms. Our understanding of 
these dynamics and the algorithms they might give 
rise to is still primordial and crude, and obtaining a 
principled understanding is a challenge for the years 
ahead. Hopefully, such understanding will provide 
insights into our deep adaptability and creativity, ena-
ble future neuro-​inspired AI that is more flexible and 
adaptable, and lay down the necessary groundwork for 
understanding mental disorders in physiological terms.

Published online xx xx xxxx

Gradient descent
An optimization algorithm  
for finding a local minimum  
of a differentiable function.

Overfitting
The fitting that corresponds 
too closely to a particular set 
of data, and may therefore fail 
to fit additional data or predict 
future observations reliably.

Search space
The space of all feasible 
solutions, among which the 
desired solution resides.

Bayesian network inference
Use of a Bayesian network to 
estimate the probability that  
a hypothesis is true based  
on evidence.

Initialization
The assignment of initial  
values to parameters, such as 
synaptic weights in the context 
of artificial neural networks.
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