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Synaptic plasticity is a central theme in neuroscience. A

framework of three-factor learning rules provides a powerful

abstraction, helping to navigate through the abundance of

models of synaptic plasticity. It is well-known that the

dopamine modulation of learning is related to reward, but

theoretical models predict other functional roles of the

modulatory third factor; it may encode errors for supervised

learning, summary statistics of the population activity for

unsupervised learning or attentional feedback. Specialized

structures may be needed in order to generate and propagate

third factors in the neural network.
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Introduction
Associative (Hebbian) learning indicates association

between two factors (two sensory inputs or an input

and an output), but such a learning is often influenced

by a so-called third factor. In a very general framework of

three-factor learning, plasticity is realized by changing a

synaptic strength w with the following rule

_w ¼ Fðpre; post; g; wÞ; ð1Þ

where pre and post are some functions of histories of

presynaptic and postsynaptic activities, g is a third factor

modulating the plasticity (Figure 1), and _w denotes the

time derivative of the synaptic strength w. The third

factor may represent, for example, rewards, supervised

errors, summary statistics, or attentional feedback, which

could be used to facilitate different types of learning by

providing more global information about how well the

whole network is performing or how important a current
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situation is. Often learning rules are written in a more

specific form

_w ¼ gHðpre; postÞ; ð2Þ

where H is a generalized Hebbian term, which includes

some measure of correlation between presynaptic and

postsynaptic activities. As a simple example, the classical

Hebbian learning assumes a rate model of neurons,

wherein the activities are described by real valued firing

rates fpre and fpost. The Hebbian plasticity term then

simply involves a product of those firing rates (‘fire

together wire together’).

In more detailed, biologically plausible models, the activ-

ity of each neuron is approximated by a point process, that

is, it is fully determined by a set of times at which the

neuron generated action potentials (spike train). When

both pre and post are given by the spike trains of the

corresponding neurons, the learning rule based on H( pre,
post) is called spike-timing-dependent plasticity (STDP)

[1,2]. In the simplest scenario STDP is described by

pairwise interactions, that is, it depends only on the

relative timing of pairs ( pre–post) of individual spikes

[3,4]. Function H( pre, post) can be in this case determined

by the learning window (also STDP function), that is, one

dimensional function of the relative time between pre-

synaptic and postsynaptic spikes. In the standard STDP,

long-term potentiation (LTP, the connection is strength-

ened) is observed if the presynaptic spike precedes (in

some short time window) the postsynaptic spike (pre-

before-post), whereas long-term depression (LTD, the

connection is weakened) is observed if the postsynaptic

spike precedes the presynaptic spike (post-before-pre).

This temporally asymmetric STDP is an extension of the

original Hebb’s postulate and in some limits simplifies to

the classical Hebbian term ( fpre fpost). Note that Equation

2 can describe more complicated STDP rules that may

involve more than two spikes [5] or more biophysical

calcium-based plasticity rules if the calcium concentra-

tion is primarily determined by the presynaptic and

postsynaptic activity [6,7].

A possible biological implementation of the three-factor

learning is provided by neuromodulators. Multiple in vitro
experimental studies have shown that neuromodulators

modulate Hebbian plasticity in various ways. In hippo-

campus, the activation of the D1 subunit dopamine

receptor reverses LTD to LTP and extends the LTP
www.sciencedirect.com
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Figure 1
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A schematic image of modulations of Hebbian plasticity by third factors.
part of the STDP time window [8], leading to temporally

symmetric STDP function (LTP for both pre-before-

post and post-before-pre). In contrast, the activation of

the a subunit adrenaline receptor reverses LTP to LTD

[9]. In addition, modulations of synaptic plasticity occur

with various neuromodulators, including dopamine [10],

noradrenaline [11], acetylcholine [12], and serotonin (5-

HT) during the developmental stage [13]. Another bio-

logical mechanism that can implement the three-factor

learning is inhibition. Recently, it was reported that

GABAergic inhibition directly suppresses local dendritic

Ca2+ signaling and promotes spine shrinkage and elimi-

nation of hippocampal dendritic spines [14], and such

suppression of dendritic Ca2+ is sensitive to precise

timing (<5 ms) of inhibitory input [15]. In corticostriatal

synapses, with intact physiological GABAergic transmis-

sion, the pre-before-post stimulation induces LTD,

while the post-before-pre stimulation induces LTP
www.sciencedirect.com 
[16]. However, blockade of GABAA-receptors converts

LTD into LTP, and vice versa [17]. In addition, glial

cells may also modulate and coordinate Hebbian plas-

ticity [18].

In this manner, the third factor modulates the original

associative learning in various ways, which must play roles

in different brain functions. Note that the multiplicative

relationship between the third factor and the Hebbian

term in Equation 2 is a useful mathematical simplifica-

tion. The biological third factors described above can, in

addition, directly modulate the presynaptic or postsynap-

tic activities. In the rest of the paper we list some of the

hypothetical roles of the third factor proposed in the

theoretical literature, as well as possible computational

mechanisms of their generation and propagation.

Although many of these functions were proposed based

on theoretical considerations, the underlying algorithms
Current Opinion in Neurobiology 2017, 46:170–177
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are biologically plausible, that is, they could potentially

be implemented by the brain.

Functional roles of the three-factor learning
rules
In contrast to the two factor Hebbian learning that modi-

fies synapses based on their presynaptic and postsynaptic

activity, the three-factor learning is more flexible because

synapses are modulated also based on the third factor that

can reflect more global information about how well the

whole network is performing or how important a current

situation is. A three-factor learning rule naturally arises

from training synaptic strength to optimize a network

function. Examples of such optimization include maxi-

mization of predicted reward or minimization of error

from preferable activity patterns as we describe below.

The most well-known example of the three-factor learn-

ing is the connectionist implementation of the reinforce-

ment learning (RL) [19,20]. Learning in RL is driven by

scalar rewards r, received by an agent acting in its envi-

ronment. Although the reward alone could be in principle

used as the third-factor [19,20], effective algorithms for

learning the optimal policy are based on a reward predic-

tion error d (temporal difference [21]). Indeed, it has been

observed that d is encoded by dopaminergic neurons

[22,23�]. Most of the connectionist RL algorithms can

be written in the form of Equation 1, where the reward

prediction error d is used as the third factor g. This type of

the three-factor learning is well-established and an inter-

ested reader is referred to [24�,25,26] for comprehensive

reviews on the topic.

In supervised learning, in contrast to the reward signal,

supervised signals provide full information about the

desired output of the neurons. Those third factor signals

come in different flavors, depending on the coding

scheme used by the network. In rate neural models,

the desired and actual outputs are given by continuous

firing rates, whereas in spiking neural models the corre-

sponding fully supervised signal should encode the

desired spike train. Several schemes for learning spike

trains have been proposed recently, see ReSuMe [27],

chronotron [28], SPAN [29], PSD [30], MPDP [31], and

FILT [32].

One can also consider semi-supervised scenarios, in

which the amount of information about the desired out-

put is limited.1 For example, Gütig proposed aggregate-

label learning [33�], in which feature-processing neurons

are exposed to a (semi-)supervisory signal proportional to

a desired number of spikes in a given trial. The
1 Here, we use semi-supervised learning in a broad sense, in which

learning is based on labels that do not fully specify desired output. Note

that classical semi-supervised learning deals with a more specific sce-

nario using mixture of labeled and unlabeled data.
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corresponding gradient-based learning rule is a multi-

spike generalization of the tempotron [34], and can be

approximated by a modulated Hebbian learning rule.

The aggregate-label learning was shown to work well

in a simple speech recognition task. A neuron was trained

on utterances with variable number of different words

(digits). After training, the neuron would fire exactly one

spike every time the desired word crops up in a continu-

ous speech stream. Moreover, each spike would be time-

aligned with the corresponding word, so that the spike

train encodes not only the number of appearances of the

desired word within the trial, but also their timings. Since

no temporally annotated training data was used, this

amounts to solving the temporal credit-assignment

problem.

A three-factor learning rule can also perform unsuper-

vised learning. Recurrently connected networks can learn

to generate specific spiking sequences, utilizing a third

factor that summarises activity of all recurrently con-

nected neurons [35,36]. Moreover, feedforward networks

can learn to separate independent sources when they

receive mixtures of the sources as input [37�]. As we

describe below, a third factor that sums the activity of

output neurons is critical for performing this independent

component analysis (ICA) [38] in a biologically plausible

manner which may be consistent with a recent in vitro
experiment [39].

Finally, attention may also modulate the learning rate. In

the attention-gated RL [40] and the attention-gated

memory tagging [41], two factors modulate the Hebbian

term: a reward prediction error and an (top-down) atten-

tional feedback. On the basis of the inputs from a hidden

layer, an output layer chooses an appropriate action by the

winner-take-all mechanism. The rest of the network is

then informed about the selected action via feedback

connections, which limits the occurrence of plasticity to

affect only those synapses that were relevant in the action

selection. In other words, the feedback is used to assign a

credit to neurons.

Generation of the third factor signals
So far we have seen that the third factors can be useful for

learning in many ways and that they are likely used by the

real brain. But where do they come from? In the following

we list some theoretical models which successfully incor-

porate internally generated third factors into the learning

process.

Let us start again from the reward system described in the

machine learning literature. In RL action selection is

often based on the value function. While the values of

states and actions can be described in a tabular form, this

representation is not biological and, in most practical

situations, number of possible states and actions is too

large to use the tabular representation. A standard way
www.sciencedirect.com
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around this issue is to train a feedforward neural network

for encoding the value function. Here again the predic-

tion error drives the learning, but instead of a direct

update of the tabular value, the momentary error in the

value function is used as a third factor to supervise the

neural network. In this way the supervised signal is

internally generated based on the reward. The power

of this approach has been demonstrated in practice,

leading to human-level or superhuman performance in

backgammon [42], Atari 2600 games [43], and Go [44]. On

a side note, in the standard RL paradigm reward is scalar

and is given externally to the agent. In real biological

systems, however, rewards are evoked by the sensory

inputs and are often non-scalar, that is, they may be

related to different goals, like for example, feeding and

reproducing. How these rewards are calculated based on

the sensory inputs and then combined to produce a scalar

reward signal are interesting but highly nontrivial pro-

blems [45–47].

In self-supervised spiking neural network models [33�],
fully unsupervised learning is achieved by means of

internally generated supervisory signals. On the basis of

linear summation of spike counts of the processing

neurons within a trial, supervisory neurons that are

assigned to individual processing neurons determine

whether the assigned processing neuron should

increase or decrease their number of output

spikes. If each supervisory neuron receive input pref-

erentially from geometrically nearby processing neu-

rons, the processing neurons learn topologically orga-

nized receptive field.

In addition, some models predict that an average neural

activity of a population of neurons could play an impor-

tant role in the computation of the third factor. In the RL

learning of two choice tasks, neural population activity

can be used for the computation of the third factor to

provide tailormade supervising signals for individual neu-

rons. When a majority-vote of neurons leads to punish-

ment, it is more efficient to provide virtual reward in the

form of the third factor to the minority of neurons that

suggested the other choice [48]. More generally, many

third factors can be calculated as the sum of nonlinearly

transformed activities of a population of neurons. For

example, surprise is suitable as the third factor and can

be calculated locally by summing log firing probabilities

of each neuron [35,36].

To see how such a global signal acts, let us consider blind

source separation of independent sources, that is, the ICA

problem. Suppose the external world mixes underlying

hidden independent sources s by a mixing matrix A and

provide to a neural network mixed signals x = As as

sensory input (Figure 2). The neural network linearly

weights the sensory input x with synaptic strength matrix

W and produces output u = Wx. The goal of ICA is to learn
www.sciencedirect.com 
W so that the components of output u become as inde-

pendent as possible. It turns out that the three factor

learning rule of Equation 1 can efficiently perform the

task [37�], and the common third-factor for all synapses is

given by

g ¼
X

k

log pðukÞ þ const:; ð3Þ

where index k runs over all output neurons and p is the

probability distribution of the sources. Thus, the third

factor monitors the nonlinear sum of the outputs and gates

Hebbian plasticity (Figure 2). This third factor could be

biologically encoded by GABA which is consistent with

the experimental observation that GABAergic input can

invert Hebbian to anti-Hebbian plasticity [17]. Note that

the third factor in Equation 3, possibly encoded by

inhibition, directly modulates Hebbian plasticity without

affecting neural activity. This stands in contrast to other

neural network implementations of ICA (see e.g. [49]),

where inhibition indirectly affects learning through mod-

ulating neural activity.

Propagation of the third factor signals
Currently, many machine learning models have deep

hierarchical structures. Typically, supervising signals

are provided only to output neurons and, therefore,

training of other neurons require solving the spatial

credit assignment problem [51]. In order to convert the

error of output neurons to that of other neurons the

backpropagation  (BP) algorithm [52] is often used in

machine learning. The standard implementation of BP

is based on selective propagation and integration of

error signals from postsynaptic to presynaptic neurons

through several neural layers (cf. Figure 3a). However,

no known biological mechanism could support such

coordinated third factor signaling. Because of the suc-

cesses of BP in diverse artificial intelligence applica-

tions [53], the hypothesis that BP is also realized in the

brain is alluring and has led many researchers to con-

sider alternative, biologically more plausible imple-

mentations of BP. This pursuit has a long history

[54–56] and recently many new models have been

put forward, some of which are shown in (Figure 3b–d)

and discussed in the following.

A new learning rule introduced in [57] draws on the

two-layer perceptron interpretation of a biologically

plausible neuron model [58]. A model neuron consists

of a soma and multiple active dendritic branches. Each

dendritic branch has its own local voltage and can

generate NMDA-spikes, which is motivated by in vitro
[59–61] and in vivo [62] studies. The resulting multi-

compartment neuron is equivalent to a two-layer net-

work of point neurons, in which the hidden units

correspond to the dendritic branches (Figure 3b).
Current Opinion in Neurobiology 2017, 46:170–177
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Figure 2

Source

Input

Output

Global signal

S1

A11

W11
W14 W41

W44

x1

u1

g

u2 u3 u4

x2 x3 x4

A14 A41

A44

S2 S3 S4
–3 0 3 –3 0 3 –3 0 3 –3 0 30.

0
0.

1
0.

2

0.
0

0.
1

0.
2

0.
0

0.
1

0.
2

0.
0

0.
1

0.
2

Current Opinion in Neurobiology

A three-factor learning rule for ICA (reprinted and modified from [37�]). The mathematical model consists of hidden sources si (1 � i � 4) (the

highest layer), sensory inputs xi =
P

jAijsj (the second layer), output neural activities ui =
P

jWijxj (the third layer), and a global signal g as the third-

factor (the lowest layer). Note that i and j are indices of sources, inputs, and outputs; Aij is an element of the mixing matrix of the generative

model; Wij is an element of the synaptic strength matrix. The third-factor prevents outputs from correlating with each other, through a modification

of Hebbian plasticity. The figure illustrates ICA of natural images, where sensory inputs (the second layer) are generated by mixing hidden sources

(the highest layer; three natural images and a noise image), and outputs of the neural network can extract hidden sources (the third layer) in the

absence of supervision. We retrieved these pictures from the Caltech101 dataset [50] (http://www.vision.caltech.edu/Image_Datasets/Caltech101/)

and processed them accordingly.
The supervised learning rule introduced in [57] is

equivalent to BP. However, this approach cannot be

directly generalized to propagate signals back across

different neurons.
Current Opinion in Neurobiology 2017, 46:170–177 
A more general machine learning approach with a long

history is based on the idea of target propagation [63,64].

Here, during training each neuron in the trained network

has access to its individual target output value, rather than
www.sciencedirect.com
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Figure 3
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Different ways of propagating supervised signals. (a) Standard backpropagation: during forward pass a multilayer network receives signals (o*)

from input nodes (yellow) and propagates them via learnable weights (black solid arcs) through hidden layers (gray) to the output layer (green). In

the backward pass, a teacher (yellow star) compares the outputs to their desired values and feeds back the errors (red arrows, d). Errors are

propagated back using the same weights as in the forward pass (red solid arcs). Each neuron computes its error (d) in a different manner than its

activity (o). (b) Multi-compartment neuron: it is equivalent to a two layer perceptron. Each dendritic tree performs nonlinear operations on its inputs

and is equivalent to a point neuron. Soma and axon correspond to the output neuron. Teacher signal is provided by direct somatic inputs. (c)

Target propagation: for training a multilayered network (top) an auxiliary network (bottom) is used. The auxiliary network is trained to match inverse

of the main network. Given the desired outputs, the auxiliary network can then generate target values for hidden layers of the main network. (d)

Predictive coding: a recurrent neural network with auxiliary nodes encoding prediction errors (e). They are connected with their corresponding

nodes via fixed connections (dashed arcs) with weights +1 (arrows) or �1 (circles). Learnable weights come in anti-symmetric pairs, arcs with

circles correspond to the learnable parameters in the feedforward network with a reversed sign with respect to arcs with arrows in the feedback

network. During learning both input and output nodes are clamped at the desired values. No third factor is involved here.
the propagated error. Target propagation can thus in

principle be applied in nondifferentiable networks, given

that we know how to guess the target value. In a recently

proposed variant [63,64], target values are generated by

an auxiliary neural network, which learns to implement a

top-down inverse mapping with respect to the trained

bottom-up network (Figure 3c). One can think of it as a

way of learning the backpropagation algorithm.

Further, it has recently been proven [65�] that weights of

middle layer neurons established by learning in a hierar-

chical predictive coding model [66,67] are approximately

the same as weights established by the BP algorithm.

Thus, BP might be biologically plausibly implemented in

the brain using such a predictive coding model

(Figure 3d). Other recent models involve random feed-

back connections [68] and energy-based networks [56,69],

see [70�] for a comprehensive review of recent results.

In addition, some experimental evidence supports the

existence of backpropagation in actual neural networks.

Poo and colleagues have shown that a retrograde axonal
www.sciencedirect.com 
signal, for example, BDNF, generated by a pairwise firing

led to changes in synaptic strengths in upstream neurons

without activation [71,72]. This retrograde axonal signal

could be propagated from postsynaptic to presynaptic

neurons and is hypothesised to represent information

required for backpropagation [73].

Conclusion
Living organisms face challenging environments in which

they have to generate complex behaviors in order to

survive and reproduce. This complexity can be achieved

by an optimization of a limited number of internally

generated cost functions [70�]. Each cost function should

have a corresponding error that can be broadcasted within

the brain. Neuromodulators may serve as the implemen-

tation of this broadcasting mechanism. They can directly

affect neural activity as well as modulate synaptic plas-

ticity in the form of the third factor. The observed

diversity of substances possibly implementing the third

factor may provide the required dimensions for encoding

distinct errors at different time-scales and spatial-scales.

Although a lot is already known about the effects of
Current Opinion in Neurobiology 2017, 46:170–177
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neuromodulators on neural activity and synaptic plasticity

[74], the relation between plasticity modulation and

behavior is still not fully understood. In the hope of

providing guidance for experimental studies, we have

reviewed putative computational roles of recently con-

jectured third factors as well as possible mechanisms of

their calculation and propagation through the neural

network. We believe that the recent advances in experi-

mental techniques will pave the way for examining those

models.
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