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In natural foraging, many organisms seem to perform two different types of motile search: directed
search (taxis) and random search. The former is observed when the environment provides cues to guide
motion towards a target. The latter involves no apparent memory or information processing and can be
mathematically modeled by random walks. We show that both types of search can be generated by a
common mechanism in which Lévy flights or Lévy walks emerge from a second-order gradient-based
search with noisy observations. No explicit switching mechanism is required—instead, continuous
transitions between the directed and random motions emerge depending on the Hessian matrix of the cost
function. For a wide range of scenarios, the Lévy tail index is α ¼ 1, consistent with previous observations
in foraging organisms. These results suggest that adopting a second-order optimization method can be a
useful strategy to combine efficient features of directed and random search.
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Many organisms must actively search for resources in
order to survive and produce offspring. The foraging theory
examines the various search strategies implemented by
organisms depending on their abilities and the environments
in which they live. In a directed search, the greater
involvement of sensory and information processing abilities
enable more complicated strategies. In contrast, in the
boundary case of a memoryless and senseless forager, the
only option is to wander randomly in the environment
(random search). Even in this case, however, different
strategies exist, depending on the character of the random
motion.A natural candidatemodel for the random strategy is
Brownian motion that describes a wide range of natural
phenomena, including the movement of inanimate particles
under thermal noise. A prominent feature of Brownian
motion is the linear growth of the variance of the position
with time. However, empirical data indicate that for organ-
isms the observed growth is often faster. Lévy walks (LWs)
[1–3] and similar Lévy flights (LFs) [2,4,5] have been
successfully applied to fit experimental data obtained from
the movement patterns of many organisms and their cells,
including T cells [6], microglia [7], starved slime mold
(Dictyostelium discoideum) [8,9], swarming bacteria [10],
fruit flies [11], honey bees [12,13], wandering albatrosses
[14,15], marine predators [16], and humans [17–19] (also in
a human’s gaze [20] and word association [21] trajectories).
In many different random search scenarios, LWs and LFs
have been shown to be advantageous over normal diffusion
[22–32] and alternative superdiffusive models [33]. These
observations have led to the so-called Lévy flight optimal
foraging hypothesis, which states that LFs (or LWs) re-
present evolutionary adaptations due to their distinct advan-
tages over other random search strategies [22,34,35].
Recently, this viewhas been disputed, because none of the

mentioned organisms is senseless and all of them are able to

perform some forms of directed search (taxis); for example,
T cells and isolated bacteria perform chemotaxis [36–40],
whereas fruit flies perform phototaxis [41], geotaxis [42],
and chemotaxis [43,44]. Indeed, a number of studies have
shown that characteristics of LFs and LWs may emerge
naturally on large scales from more realistic case specific
models of movement [45], including simple deterministic
and semideterministic walks in complex environments
[35,46–50], self-avoiding random walks [51–53], diffusion
with a time-varying diffusion constant [54–56], and a
multiplicative, self-accelerating process [9,57,58]. It has
also been suggested that in some species a power-law
distribution of lengths of straight line segments of their
movement patterns, a hallmark of LWs and LFs, is a
consequence of either the Weber-Fechner law in odometry
[59], a power-law distribution of switching times between
competing activities [60–65], or a so-called aerial lottery
[66–68]. Moreover, in some cases the apparent superdiffu-
sive character of the population dynamics may be an artifact
of averaging over an ensemble of the diffusive motions of
individuals with diverse characteristics [69].
These studies suggest that LWs and LFs naturally arise in

many realistic biological settings, but they do not argue
why an apparent common behavior is observed across
species and environments. Recently, a generalization of the
LF optimal foraging hypothesis was proposed that explic-
itly combines directed and random search strategies.
Specifically, an ad hoc combination of taxis for choosing
a direction and random, heavy-tailed distributed step
lengths was shown to be efficient under some search
conditions [27,70]. In contrast, here we propose a novel
mechanism by which LWs and LFs can emerge from a
generic, locally optimal, directed search strategy. In our
model, the directed search is realized as a taxis driven by
local observations of a cost function (e.g., a repellent
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concentration minus an attractant concentration) whose
minima correspond to targets. Inspired by the second-order
gradient-based optimization techniques known from com-
puter science, we assume that the search is based on noisy
gradient and Hessian estimates. As we show below, this
generically leads to heavy tails of the step distribution. In
contrast to previous models, our model predicts a continu-
ous crossover between random Lévy searches and directed,
deterministic taxis depending on the amount of information
on the target location provided by observations.
This Letter is organized as follows. First, we fix the

notation and introduce a one-dimensional version of our
model. Next, we list different scenarios in which we are able
to prove the existence of the heavy tails.We thendiscuss how
the tails are affected by the landscape and the observation
methods. Finally, we discuss a multidimensional generali-
zation of the model followed by concluding remarks.
Let ðxnÞ∞n¼0 be a sequence generated by the Newton

optimization rule

xnþ1 ¼ xn þ Δn; ð1Þ
with

Δn ¼ −
f0ðxnÞ þ ξðnÞG

f00ðxnÞ þ β þ ξðnÞH

; ð2Þ

where the cost function f∶R → R is to be minimized. The

rule with β ¼ ξðnÞG ¼ ξðnÞH ¼ 0 performs a gradient descent
or a gradient ascent on f, depending on its curvature.
A positive constant β (damping) is added to the denom-
inator in order to turn this algorithm into a minimizer. Note
that the steepest descent method

~Δn ¼ −
f0ðxnÞ þ ξðnÞG

β
ð3Þ

is recovered from (2) in the limit of β → ∞ if f has a

bounded second derivative. Terms ξðnÞG and ξðnÞH account for
noise: If the optimization is to be performed in the physical
world, derivatives of f are based on noisy measurements.
Similarly, in many optimization problems solved on a
computer, especially in machine learning, a function to
be optimized is estimated with finite precision. With these
definitions, the sequence ðxnÞ∞n¼0 denotes a one-dimensional
discrete-time random walk.
Trajectories of LWs consist of linear segments (or

instantaneous jumps in the case of LFs) Δn, which are
independent and identically distributed random variables
(hence we omit the time index n in the discussion of
distributions and write simply Δ). The probability density
function (PDF) of Δ is characterized by heavy tails, i.e., for
large jzj

ρΔðzÞ ∼ jzj−1−α; ð4Þ

where the tail index 0 < α < 2. In the following, we show
that for a wide range of scenarios the random walk defined
by (1) and (2) is equivalent to a (possibly inhomogeneous)
LW or LF (depending on how it is mapped into a
continuous time process [71]) with α ¼ 1. We shall first
analyze the case when β ¼ 0 and fðxÞ ¼ const, so that only
noise is sampled. Assuming that the noise is Gaussian and
that both f0 and f00 are measured independently and without
bias, we can write

Δ ¼ −
ξG
ξH

; ð5Þ

where ξG and ξH are independent Gaussian variables with
zero mean and standard deviations σG and σH. The reader
can easily verify that Δ is in this case characterized by the
Cauchy distribution

ρΔðzÞ ¼
1

π

γ

γ2 þ z2
; ð6Þ

where γ ¼ ðσG=σHÞ. Comparing (6) with (4), we see that in
our case α ¼ 1. More generally, let us assume that the
numerator XG and denominator XH in (2) are independent
random variables with PDFs ρXG

and ρXH
, respectively.

This is the case if ξG and ξH are conditionally independent
given the current position of the walker. The asymptotic
form of the PDF of Δ ¼ −XG=XH is given by

ρΔðzÞ ¼
Z

∞

−∞
dz1ρXG

ðz1Þ
Z

∞

−∞
dz2ρXH

ðz2Þδ
�
zþ z1

z2

�

¼ 1

z2

Z
∞

−∞
dz1ρXG

ðz1ÞρXH

�
−
z1
z

�
jz1j

¼ hjXGjiρXH
ð0Þ

z2
þ oðz−2Þ; ð7Þ

where the last equality holds if hjXGji≡R
ρXG

ðzÞjzjdz<∞
and 0 < ρXH

ð0Þ ¼ limz→0�ρXH
ðzÞ < ∞. The condition

hjXGji < ∞ is equivalent to the statement that the tails
of ρXG

ðzÞ decay faster than z−2. If this condition is not
fulfilled, the appearance of heavy tails in the distribution of
Δ is trivial. In our case, however, the heavy tails of ρΔ
appear due to a nonzero probability of XH being arbitrarily
close to zero. The described mechanism is very general, as
it does not assume that the noise distribution has heavy
tails. Intuitively, the division in (2) takes the role of a noise
amplifier. Clearly, first-order methods, such as the steepest
descent (3), do not involve a division by a random variable
and therefore do not generically lead to heavy tails.
In the case of correlated XG and XH, the presence of

heavy tails cannot be ensured, in general. For instance, if
XG ¼ −YXH for some random variable Y, then the result-
ing Δ has the same distribution as Y. However, as we will
now show, the heavy tails are still present in the generic
case of the bivariate normal distribution of XG and XH:
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ρXðxÞ ¼
jPj1=2
2π

exp

�
−
1

2
ðx − μÞ⊺Pðx − μÞ

�
; ð8Þ

where X ¼ ðXG
XH
Þ is a two-dimensional Gaussian random

vector, μ ¼ ðμGμHÞ is a vector of its expected values, P ¼
ðP11

P21

P12

P22
Þ is a symmetric, positive-definite precision matrix,

and jPj is its determinant. The PDF of Δ can be calculated
as ρΔðzÞ ¼

R
d2xρXðxÞδ½zþ ðx1=x2Þ� and in the special

case of μG ¼ μH ¼ 0 simplifies to the shifted Cauchy
distribution

ρΔðzÞ ¼
1

π

jPj1=2
P22 − 2P12zþ P11z2

: ð9Þ

In general, ρΔ takes the form

ρΔðzÞ¼
jPj1=2
2πz2

Z
∞

−∞
dxjxjexp

h
−
1

2
ð~x−μÞ⊺Pð~x−μÞ

i
¼ IðzÞ

z2
;

ð10Þ
where ~x ¼ ð x

−x=zÞ. Since 0 < limz→∞IðzÞ < ∞, we see that

yet again ρΔðzÞ ∼ 1=z2 for large z.
It may now seem like the second-order methods should

always lead to LFs or LWs given noisy observations, which
might prevent them from being an efficient search strategy.
However, this is not the case if the regularization factor β
and curvature f00ðxÞ in the denominator strongly temper
heavy tails in (2). For example, in the case of independent
Gaussian ξG and ξH, the large z limit of the cumulative
distribution of the step size in (7) is given by

PðjΔj > zÞ ≈ 2hjXGjiρξH ½−β − f00ðxÞ�
z

¼ 2hjXGjiffiffiffiffiffiffi
2π

p
σHz

e−ðc2=2Þ

ð11Þ
with c ¼ (β þ f00ðxÞ)=σH. Namely, heavy tails are still
present, but they are suppressed by the exponential factor
e−c

2=2. Thus, for jβ þ f00ðxÞj ≫ σH the probability of large
random displacements is extremely low. Equation (11)
provides a hint as to why the noisy second-order search
may be efficient: If β and σH are chosen such that c ≈ 0 at
the maxima, where f00 is negative, and c ≫ 1 at the minima,
where f00 is positive, heavy tails are present in the vicinity
of the maxima facilitating fast escapes, whereas around the
minima heavy tails are strongly suppressed, allowing for an
effective local exploration.
We now address the question of how the method of

estimating f0 and f00 from noisy measurements of f can
influence our results. The simplest possible model in 1D
consists of three observations. Let us assume that the
observations are performed at x0 − δx, x0, and x0 þ δx,
resulting in the following noisy measurements: y−¼
fðx0−δxÞþξ−, y0¼fðx0Þþξ0, and yþ¼fðx0þδxÞþξþ,
where ξ• represent multivariate Gaussian noise. If we
assume that δx is small enough, we can write the following

formulas for the maximum likelihood estimates of the first
two derivatives:

f̂0ðx0Þ ¼
yþ − y−
2δx

≈ f0ðx0Þ þ ξG;

f̂00ðx0Þ ¼
y− þ yþ − 2y0

δx2
≈ f00ðx0Þ þ ξH; ð12Þ

where ξG¼ðξþ−ξ−Þ=2δx and ξH ¼ ðξþ − 2ξ0 þ ξ−Þ=δx2.
Hence, ξG and ξH are two jointly Gaussian random
variables. As shown in (9), this generally yields the LW
or LF with α ¼ 1. This reasoning is still valid in scenarios
with more measurements, whenever the desired estimates
are based on linear combinations of noisy observations.
Note that the more measurements used in the estimators,
the better the Gaussian model of noise.
Finally, we turn our attention to the multidimensional

case. For simplicity, we assume that the search space is RD

with D ∈ N. The jump vector, in analogy to (2), takes the
following form (as before, since we focus on a single step,
we omit the step index):

Δ ¼ −A−1∇f̂ðxÞ ¼ −½HfðxÞ þ βI þ ξH�−1½∇fðxÞ þ ξG�;
ð13Þ

whereHfðxÞ denotes the Hessian of f, ξG is a noise vector,
and ξH is a symmetric noise matrix. Under mild conditions,
in the limit of D → ∞ the noise eigenvalues λðξHÞ follow
the Wigner semicircle distribution [72–75]. If the curvature
and damping are much weaker than the noise, they can
influence the distribution only insignificantly, so that
0 < ρλðAÞð0Þ < ∞ still holds. Let Q be an orthogonal

matrix diagonalizing A. The kth component of QTΔ ¼
−QTA−1QQT∇f̂ðxÞ is proportional to 1=λðAÞk, and thus,
according to (7), its distribution has the heavy tail 1=z2. We
can thus conclude [76,77] that the distribution of jjΔjj also
has the heavy tail 1=z2. In the continuous time limit, this
leads to a superdiffusive, multidimensional LW or LF
[76,78–82]. Note that the components of Δ are not
independent and the spectral measure [76,81] takes a
nontrivial form, which will be the subject of future studies.
In contrast, if the shift of the eigenvalue distribution related
to the curvature and damping factor is strong enough, the
tails can be cut off completely, due to the bounded support
of the Wigner semicircle distribution. In this case, the
continuous time limit process corresponds to diffusive
search. Although for any D < ∞ the cutoff formally
disappears, this shows that the heavy tails can be strongly
tempered by the damping factor and the curvature.
Importantly, the heavy tails may be tempered in the
directions of large curvatures while being preserved in
the other directions, thus providing a flexible combination
of random and directed search mechanisms.
We finally test our results using computer simulations

in a simple example of a search in an unbounded
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two-dimensional space; see Fig. 1. First, the first-order
search in (3) does not produce power-law tails, and its
searching trajectory corresponds to that of normal diffusion
except near a target. The median distance from the initial
position scales as

ffiffiffi
n

p
with time step n. Next, as predicted

by our theory, the second-order search with a sufficiently
large Hessian noise (σH ≈ f00 þ β) produces heavy tails of
the jump length distribution. In this case, the median
distance from the initial position scales linearly with time,
which is a characteristic of the LF process with α ¼ 1. If the
Hessian noise σH is a few times smaller than f00 þ β, the
behavior of the second-order method is in the middle
between the above two extreme cases. In this case, the
heavy tail of the step size distribution is present but
somewhat tempered, in line with (11). As a consequence,
the growth of the median distance from the initial position
is initially ∼

ffiffiffi
n

p
, similarly to normal diffusion, but slowly

builds up in time as ∼n due to infrequent LF-like jumps.
Note that, in the current simulation setup, the median
distance saturates before the generalized central limit
theorem predicts its linear growth, because the trajectories
are trapped by the targets sooner. This indicates that the
second-order method with an appropriate noise level (or the
damping constant) can find a target faster than the first-
order search or the ad hoc combination of directed search
with power-law step sizes. The detailed analysis of the
optimal choice of the damping factor will be given else-
where, but, intuitively, it is beneficial to perform the first-
order search in the direction of a convex surface and
perform the LF search along the direction of a concave or
plateau surface.
In summary, we analyze a stochastic version of Newton’s

optimization method. We argue that noise in the estimates
of the Hessian leads to a heavy-tailed distribution of jumps,
an indicator of LWs or LFs. We present conditions in
D ¼ 1 and D → ∞ under which the appearance of the
heavy tails is guaranteed, and we corroborate these findings
with computer simulations in the biologically relevant case
of D ¼ 2.
Our model explains how a seemingly common behavior

(LW with the fixed tail index α ¼ 1) can emerge from a
generic and locally optimal search strategy in the presence
of noise. This proposal is consistent with the role of
evolution and adaptation under selection pressures in
acquiring an advantageous search strategy. However, unlike
some earlier proposals [22,35,83] that explore over the
entire range of plastic α, our model gives only two possible
rigid values for α: α ¼ 1 generally and α ¼ 2 in the limit
of ðf00 þ βÞ=σH → ∞. Moreover, our approach is distinct
from the Lévy flight foraging hypothesis [22], because the
possible evolutionary optimization is not carried within the
family of random search strategies (e.g., over a range
of α) but explicitly involves directed searches. Indeed,
multiple specific mechanisms shaping directed search have
been previously shown to produce LWs with an α ¼ 1, e.g.,
movements in narrow, confined environments [45], in bulk-
mediated effective surface diffusion [45,84], and in patchy
environments if foragers use information about patch
quality [49]. Our proposal has two advantages over such
findings: First, the second-order gradient-based optimiza-
tion method is a well-established generic search strategy
that works efficiently in many different environmental
conditions. Second, by including taxis, our model suggests
a specific continuous crossover between the random and
directed search strategies as we further discuss below.
Our results suggest that some organisms may perform

taxis according to Newton’s (or some other second-order)
optimization method, which should be possible to verify
experimentally. The resulting random walks are inhomo-
geneous and anisotropic, with less jerky motion along
directions with larger curvatures or weaker measurement
noise. These are distinct features of our model that can be

FIG. 1. An example of search processes in an unbounded two-
dimensional space. The optimized function f is a sum of 20
Gaussians uniformly distributed within a 100 × 100 cell, which is
periodically repeated across an infinite space. The targets are
sparse, so that in most places f is flat and does not provide any
information about the position of the targets due to measurement
noise. The top two plots represent a cell of f (yellow corresponds
to high values, blue to low values) and 20 exemplary trajectories
of searches starting from randomly chosen positions within the
cell (blue dots) and finishing at a target (green dots) or at some
random position without finding the target (red dots) due to the
time limitation (104 steps). The bottom left plot depicts the
distributions of jump lengths averaged over time and an ensemble
of 104 trajectories. The second-order search produces a power-
law tail with an exponent α ≈ 1. The bottom right plot shows the
scaling of a displacement with time. As expected, for short times
the first-order search leads to a diffusive behavior which scales as
n1=2, whereas the second-order search with strong noise σH leads
to a superdiffusive behavior which scales as n. For longer times,
the median displacement saturates due to trapping at the targets.
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taken advantage of in experiments aiming to assess whether
foraging organisms employ second-order derivatives.
The candidate organisms that use taxis and, in some
conditions, perform LWs with α ≈ 1 include microglia
[7], Dictyostelium discoideum [8,9], and Drosophila
[11]. The strategy we introduce combines the character-
istics of two algorithms that are known to be efficient in
directed (second-order optimization) and random (LFs or
LWs) search scenarios. This method should therefore
perform well in a broad range of scenarios of stochastic
optimization, which may be of interest for the machine
learning community.
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