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We propose an analytically tractable neural connectivity model with power-law distributed synaptic
strengths. When threshold neurons with biologically plausible number of incoming connections are
considered, our model features a continuous transition to chaos and can reproduce biologically relevant low
activity levels and scale-free avalanches, i.e., bursts of activity with power-law distributions of sizes and
lifetimes. In contrast, the Gaussian counterpart exhibits a discontinuous transition to chaos and thus cannot
be poised near the edge of chaos. We validate our predictions in simulations of networks of binary as well as
leaky integrate-and-fire neurons. Our results suggest that heavy-tailed synaptic distribution may form a
weakly informative sparse-connectivity prior that can be useful in biological and artificial adaptive systems.
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Scale-free neuronal avalanches, commonly associated
with criticality, have been observed in cortical networks in
various settings, including cultured and acute slices from
rat somatosensory cortex [1], eye-attached ex vivo prepa-
ration of turtle visual cortex [2], visual cortex in anes-
thetized rats [3], primary visual cortex in anesthetized
monkeys [3], and premotor, motor, and somatosensory
cortex in awake monkeys [4]. Criticality implies the
existence of a continuous transition between two distinct
collective phases. In the context of neuronal avalanches,
most commonly studied transitions are between quiescent
and active states [1,5,6] or synchronuous and asynchron-
uous states [3,7]. In addition to providing a plausible
generating mechanism for the neuronal avalanches, the
existence of a continuous transition would have important
functional implications, as it has been shown that compu-
tation is most efficient around a critical point [6,8,9], often
associated with the edge of chaos [10–14]. However, the
relation between neuronal avalanches, criticality, and the
edge of chaos is not fully understood [9,15,16].
Different scenarios of the transition to chaos in randomly

connected neural networks were extensively studied over
the last 30 years [14,17–27]. According to the prevailing
assumption rooted in the central limit theorem, the total
synaptic input current of each neuron can be modeled as a
Gaussian random variable (Gaussian assumption). Here we
argue that the Gaussian assumption cannot account for
some of the experimentally observed features of neuronal
circuits.
In particular, the continuous nature of the phase tran-

sition observed in the conventional models is sensitive to
theoretical assumptions that are not biologically grounded.

Most works that study transition to chaos employ rate
models with continuous nonthresholded activation func-
tions, often of a sigmoidal shape [14,17,18,21,23,24,27].
Sometimes thresholds are introduced, but often the analysis
is restricted to the suprathreshold regime [25,28]. But most
neurons in the brain spike only when driven by strong
enough excitatory synaptic input above a threshold [29–31].
Thus, we model a self-sustained (autonomous) activity in a
network of individually subthreshold neurons. Other models
exhibiting continuous transition to chaos [11] or neuronal
avalanches [6,32] rely on extremely sparse (∼10 connections
per neuron) networks. However, many neurons in the
vertebrate brain receive a large number of inputs from other
neurons (∼104) [33].We observed that the transition to chaos
becomes discontinuous when densely connected subthresh-
old units are used in tandem with the Gaussian assumption
(Fig. 3) [20,34]. This discontinuous character of the tran-
sition makes it hard for the network to robustly exhibit the
edge of chaos, low activity levels, or avalanches. Although a
discontinuous transition can be smoothed by noise, leading
again to critical behavior away from the edge of chaos if the
noise level is appropriate [35], such noise-induced criticality
requires extra fine-tuning. We explore instead the possibility
that an autonomous network exhibits critical behavior at the
edge of chaos.
To fix this issue, we draw on the experimental works

reporting heavy-tailed distributions of synaptic weights in
various areas of the brain [36–41]. Multiple theoretical
mechanisms have been suggested to realize such distribu-
tions, e.g., modified spike-timing-dependent plasticity
(STDP) rule [42] or STDP combined with homeostatic
plasticity [43]. Notably, recent studies have suggested that
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experimentally observed activity-independent intrinsic spine
dynamics can straightforwardly explain the heavy-tailed
distributions of synaptic weights [44–48].
Although extensively studied, the computational role

of synaptic heavy tails is still not fully understood. A log-
normal distribution is often assumed and the results are
obtained by means of computer simulations [40,49–52].
Unfortunately, the log-normal distribution is not a stable
distribution [53]. Consequently, the corresponding distri-
bution of the membrane potential depends in a nontrivial
way on the details of the connectivity, including number of
incoming connections. Moreover, if the number of incoming
connections is scaled linearly with the number of neurons,
the Gaussian assumption is recovered in the thermodynamic
limit. This hinders theoretical approaches to study the effects
of heavy tails in these models. Therefore, a simple model
that robustly predicts the effects of synaptic heavy tails is
needed. We fill this gap by assuming random, power-law
distributed synaptic weights.
Our aim is to inspect how the distribution of synaptic

efficacies, modulated by the activation function, affects the
transition to chaos and the associated avalanches. To this
end, in our calculations we focus on the network effects and
hence simplify the dynamics of individual neurons by
considering the following discrete-time network dynamics

xiðtþ 1Þ ¼
XN
j¼1

Jijϕ(xjðtÞ); ð1Þ

where ϕðxÞ is the activation function, assumed to be
identical across the network, and J is the connectivity
matrix. The network is fully connected and the synaptic
weights are independently drawn from the common
Cauchy distribution (Fig. 1)

ρðJijÞ ¼
1

π

g=N
ðg=NÞ2 þ J2ij

; ð2Þ

with the characteristic function

ΦJðkÞ ¼ e−γjkj; ð3Þ
where γ ¼ g=N defines the width of the distribution.
We refer to the model prescribed by (1) and (2) as the
Cauchy network.
Due to the generalized central limit theorem [53], in the

thermodynamic limit of N → ∞ results obtained for the
Cauchy model are applicable to networks with connections
drawn independently from any symmetric distribution with
1=x2 tails that are scaled with the number of neurons as
1=N. In contrast, in the more commonly used Gaussian
networks, the synaptic weights are independently drawn
from the normal distribution Jij ∼N ð0; g2=NÞ. In the
thermodynamic limit this corresponds to connectivity
matrices with entries independently drawn from any dis-
tribution with zero mean and a finite variance, as long as the
weights are scaled as 1=

ffiffiffiffi
N

p
.

The natural order parameter in the system at hand is the
mean network activity, defined as

mt ¼
1

N

XN
i¼1

jϕ(xiðtÞ)j: ð4Þ

The state at time tþ 1 depends on J and xðtÞ. We fix the
activity vector at time t and treat xðtþ 1Þ as a function of J,
which allows us to characterize the distribution of xiðtþ 1Þ
using Φxiðtþ1ÞðkÞ as

heikxiðtþ1ÞiJ ¼ exp

�
−gjkjN−1

XN
j¼1

jϕ(xjðtÞ)j
�

¼ expð−gmtjkjÞ: ð5Þ
The activity of a neuron at time tþ 1, as a function of
synaptic weights, is a Cauchy random variable whose
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FIG. 1. (Top) Visualizations of neural networks with Gaussian
(cyan) and Cauchy (orange) distribution of weights. Thickness
and color saturation of edges correspond to the (nonlinearly
transformed) strengths of the connections. (Middle) Probability
density functions (left) and cumulative distribution functions
(right) of Cauchy and Gaussian random variables. The Cauchy
distribution features much thicker tails than the Gaussian dis-
tribution. (Bottom) Sample realizations of the Poisson critical
branching process with the duration T ¼ 11, size S ¼ 18 (left),
and T ¼ 35, S ¼ 367 (right). The initial seeds are marked with
the green color. In this Letter, we show that activity of a fully
connected Cauchy (but not Gaussian) network around the critical
point can be mapped to the critical branching process.
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width depends on the activity at time t only through its
mean value.
To proceed we assume self-averaging, i.e., that the mean

activity is the same for each realization of the network.
Since in our model synaptic weights are statistically the
same for all neurons, in the limit of N → ∞ the mean
activity can alternatively be expressed as

mt ¼ hjϕðxiðtÞÞjiJ ð∀ iÞ: ð6Þ

We use the result of (5), i.e., that xiðtÞ averaged over J is a
Cauchy variablewith γ ¼ gmt, together with (6) and arrive at
the evolution of the mean activity in a simple integral form

mtþ1 ¼
Z

∞

−∞
DzjϕðgmtzÞj; ð7Þ

where Dz ¼ π−1dz=ð1þ z2Þ denotes that the integral is
calculated with respect to the standard Cauchy measure.
The steady-state mean activity can be obtained from (7) in a
self-consistent manner.
We are now in the position to analyze the dependence of

the dynamics of the Cauchy network on the activation
function. For ϕðxÞ ¼ x, the integral on the right-hand side
of (7) diverges, suggesting that the network is unstable.
Indeed, it is easy to understand why this is the case. For
linear networks the dynamics is fully determined by the
eigenvalues of the connectivity matrix J. It is known that,
in contrast to random matrices with Gaussian entries, a
Cauchy random matrix features an unbounded support
of the eigenvalues density, even in the limit of N → ∞
[54–56]. Thus, we can conclude that, regardless of the
value of the g, the dynamics of a Cauchy neural network is
in this case divergent. For the same reason, any ϕðxÞ that is
linear around x ≈ 0 and grows sufficiently slow for large x
leads to a self-sustained, active dynamics for any g [57].
However, in the biologically relevant regime neurons
exhibit saturation and thresholding at, respectively, large
and low values of total synaptic input. The corresponding
Cauchy network generically exhibits two phases: quiescent
and active, and an associated transition between them [57].
In general the nature of the active phase will depend on the
details of the activation function.
To further simplify the calculations and to simultane-

ously model edge of chaos and avalanches, in the following
we focus our attention on the binary activation function
ϕðxÞ ¼ Θðx − θÞ, where Θ denotes the Heaviside function
and θ denotes the threshold. In this case the mean-field
equation (7) simplifies to

mtþ1 ¼
1

π
arctan ðmtg=θÞ: ð8Þ

The stability of the trivial fixed point can be checked by
expanding the rhs of (8) around mt ¼ 0: mtþ1 ¼
ðg=πθÞmt þOðm3

t Þ. The fixed point atmt ¼ 0, correspond-
ing to the quiescent phase, is unstable for g > πθ. Since

arctanðxÞ=π is saturating and concave for all x > 0, another
stable fixed point m� close to 0 appears, through the
supercritical pitchfork bifurcation, exactly when the trivial
fixed point loses its stability [m� ≈

ffiffiffi
3

p ðg=θÞ−3=2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðg=θÞ − π
p

near the transition point]. Due to the quenched, asymmetric
disorder of the connectivity matrix we can expect this fixed
point to represent a chaotic attractor of the network [61],
with a large sensitivity to small perturbations. Our com-
puter simulations confirm this prediction [57].
The transition from the quiescent to the chaotic phase

can be understood from the underlying structure of con-
nections. Due to the power-law connectivity density, we
can expect that only a small fraction of the connections
contribute to the activity profile of the network. Indeed, as
we show in the following, the transition to chaos is driven
by the percolation transition of autocrat connections for
which Jij > θ; i.e., an active presynaptic neuron will
activate the postsynaptic neuron in the absence of other
inputs. Around the critical point the mean activity of the
network is infinitesimal and thus the higher order inter-
action events (e.g., two neurons activating another neuron)
are negligible. In other words, to a good approximation, a
neuron can only be activated by another single neuron
through an autocrat connection, independently from other
neurons. This suggests that the transition to chaos in the
neural network model is related to the critical branching
processes [64] (Fig. 1).
In the Cauchy case the probability that a given con-

nection is an autocrat reads

ProbðJij > θÞ ¼ 1

π
arctan

�
g
Nθ

�
: ð9Þ

For a given neuron, the number of outgoing (or incoming)
autocrat connections is a binomial random variable with N
trials and the probability of success given by (9). In the
limit of N → ∞ it converges to the Poisson random
variable with intensity

λ ¼ lim
N→∞

N
π
arctan

�
g
Nθ

�
¼ g

θπ
: ð10Þ

Now, let the initial state of the network be such that only a
single neuron (seed) is active. The number of active
neurons (descendants) in the next step is given by the
Poisson distribution and the mean number of active neurons
is given by (10). The theory of branching processes predicts
that the population will eventually die out almost surely
for λ ≤ 1 and has a finite survival probability for λ > 1.
At λ ¼ 1 the process is critical and features scale-free
avalanches. The critical point predicted by the branching
process formulation of the network dynamics, g� ¼ πθ, is
the same as the mean-field critical point predicted by (8).
The mapping to the branching process explains many

features of the Cauchy neural network around the critical
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point. Below the critical point the steady state is quiescent,
and a bit-flip perturbation corresponds to a single neuron
(seed) being activated. The local expansion rate of
such perturbation is given by λ. Above the critical point
(g > πθ) each bit flip contributes in the same manner as a
single seed and, additionally, interacts with other active
neurons to activate and deactivate other descendants.
Thus, in the vicinity of the transition point λ gives a
lower bound on the local expansion rate of a perturbation
in the steady state, and for λ > 1 the network is expected
to be chaotic in the thermodynamic limit [57]. Moreover,
the transition to chaos belongs to the mean-field directed
percolation universality class [65–67]. The propagation
of the corresponding avalanches is characterized by [57]
power-law distributed sizes S: ProbðS > sÞ ∼ s−1=2, and
power-law distributed lifetimes T: ProbðT > tÞ ∼ t−1.
These theoretical predictions were corroborated by our
computer simulations of the Cauchy network, as shown
in Fig. 2.

For a comparison, we have also studied Gaussian net-
works of threshold units with a fixed number of connec-
tions per neuron K [57,68]. While extremely sparsely
connected Gaussian networks (K ⪅ 12) behave qualita-
tively similar to the Cauchy network, the transition to chaos
becomes discontinuous in the biologically relevant regime
of K⪆13. With a biologically realistic K and finite N, the
network activity jumps between two metastable states near
the transition point, and cannot be robustly posed at the
edge of chaos. The discontinuous property is due to the
emergence of a metastable active state by the saddle-node
bifurcation as g=θ increases.
Importantly, although our theoretical predictions were

derived assuming simplistic threshold neural units, they
translate directly to networks of more biologically plausible
leaky integrate-and-fire (LIF) neurons. The difference of
continuous and discontinuous transition is confirmed by the
presence or absence of a hysteresis loop in more realistic
networks of LIF neurons (Fig. 3). Hence, unlike the
Gaussian networks with realistic K, Cauchy networks
demonstrate critical phenomena and can reproduce exper-
imentally observed scale-free avalanches at the critical
point. Moreover, a large Cauchy network can exhibit
arbitrarily low, self-sustained activity levels. In contrast,
the lowest possible activity level that can be achieved by the
Gaussian network with realistic K is about 11% in the
binary case and 40 Hz in the LIF case (Fig. 3).
For claritywe chose to limit our presentation to theCauchy

distribution of Jij, but our results naturally extend to other
power-law distributions. Indeed, let the synaptic efficacy
density asymptotically behave like a power law ρðJijÞ ∼
CαgαN−1jJijj−1−α [69]. We then have ProbðJij > θÞ ¼
CN−1ðg=θÞα, which holds for large enough N. The branch-
ing parameter is calculated as in (10) and reads λ ¼ Cðg=θÞα.
A continuous transition takes place at λ ¼ 1 and its features

FIG. 2. Avalanche size and lifetime distributions in the net-
works of binary units. As expected from our theoretical pre-
dictions, at the transition point these distributions are described
by power laws, and the critical exponents match those of the
critical branching process.

FIG. 3. Continuous vs discontinuous transition in networks of leaky integrate-and-fire neurons. A slowly changing current was
injected and an average firing rate of the network was recorded as a function of time and the injected current amplitude. As predicted by
our theory, a network with Gaussian weights exhibits a discontinuous transition between active and inactive states, which generates a
characteristic hysteresis loop. In contrast, the Cauchy network exhibits a continuous transition and thus shows no signs of the hysteresis
loop.
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are, as before, described by the directed percolation univer-
sality class.
The connectivity in the current model is unstructured.

It would be interesting to combine power-law synaptic
weight distributions with structured networks, for example,
with hierarchical modules [70] or oscillations [3,7,71].
Incidentally, the same Cauchy distribution of membrane

potential was found in the quadratic integrate and fire neuron
model [72] due to single-neuron dynamics. Nontrivial effects
may arise from a combination of single-neuron and network-
driven heavy-tail statistics.
Power-law distributions of synaptic weights feature many

very weak synapses, that do not directly contribute to the
computation. Even though this may seemwasteful, we think
that such architectures are not only biologically plausible
[73] but may be beneficial. One possibility is that even weak
connections can activate a neuron once contextual input from
another part of the brain increases the baseline membrane
potential close to its spiking threshold. Such contextual input
can also raise the spiking probability of nearby neurons so
that synchronous activation of weak connections is more
likely. Weak synapses have also been reported to play a role
in unsupervised features extraction [74]. In the context of
reservoir computing [75,76] high computational capabilities
were achieved using nonbiologically sparse connectivity
[77]. Our model provides a more biologically plausible
solution that the connectivity can be anatomically dense
but effectively sparse due to heavy-tailed synaptic weight
distribution. More generally, the optimal degree of sparsity
depends on the role of a given brain structure and the type of
the employed plasticity [78]. Power-law distributed synaptic
weights may in this context provide a weakly informative
[79,80] sparse connectivity prior, with weak and effectively
silent synapses providing a pool of potential connections that
can be recruited when and if needed, as observed in the brain
during development [81,82].
Our results demonstrate that the shape of the synaptic

weight distribution can dramatically affect dynamics of
neural networks. A biological distribution of synaptic
weights can give distinct predictions from the frequently
assumed Gaussian distribution. The proposed mathematical
framework with power-law synaptic weights can easily be
adapted to other scenarios in future studies.
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