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Infection curves on small-world networks are linear
only in the vicinity of the critical point
Łukasz Kuśmierza,1 and Taro Toyoizumia,b

In ref. 1, an epidemiological model based on the small-
world (2) contact network and the SIR (susceptible-
infected-recovered) infection dynamics is analyzed and
compared with the classical (well-mixed) SIR model. The
authors claim that they observe a “a hitherto unob-
served transition from linear growth to S-shaped infec-
tion curves.” This is rather surprising in the context of
previous literature studying similar models (3–9). While
scale-free networks (10) were reported to give rise
to nonstandard features, including the absence of a
nontrivial epidemic threshold and an algebraic spread-
ing growth (6–8), no such abnormalities were observed
on small-world networks (3–5, 7).

Indeed, in the following, we show that the analysis
presented in the paper (1) is flawed. The problem lies
in the order parameter O= SDðCðtÞÞ, the standard de-
viation of new daily cases (excluding days with no new
cases), which is used to signal the postulated transition
between an S-shaped growth (O> 0) and a linear
growth (O≈ 0). In reality, O can attain values close to
zero for two distinct reasons: 1) CðtÞ is constant (cor-
responding to a linear growth of the cumulative num-
ber of cases) as the authors claim, or 2) CðtÞ exhibits
low values, signaling that the epidemic is not able to
effectively spread in the population and the number of
cases drops exponentially, corresponding to the basic
reproduction number R0 taking a value below one.
Case 2, which is in line with the prediction of the clas-
sical SIR model, was never considered in ref. 1; both
theoretical and numerical calculations established the
existence of a critical point, but no evidence was

reported for the existence of the postulated linear
growth phase below the critical point.

We hypothesized that case 2 is the mechanism
yielding O≈ 0 below the critical point. To test this, we
independently simulated the model introduced in ref.
1. First, we verified that O signals a continuous transi-
tion between two distinct phases (Fig. 1A). Second,
we calculated the basic reproduction number R0

(Fig. 1B), which confirmed that, below the critical
point, an infection does not spread through the net-
work, consistent with case 2. Third, we calculated the
outbreak duration Tend, which exhibits a sharp maxi-
mum at the critical point and drops especially quickly
below the critical point (Fig. 1C). Because Tend upper-
bounds the possible duration of a linear growth, this
result indicates that prolonged linear growth is impos-
sible even slightly below the critical point. Last, we
compared the evolution of the cumulative number of
infections obtained from the small-world model and
the classical SIR model (Fig. 1D). Already slightly be-
low the critical point, the growth curve of the network
model is significantly sublinear, as expected from the
classical picture.

In conclusion, the presented results corroborate
our supposition that the linear growth in the cumula-
tive number of infections is restricted to the vicinity of
the critical point. Furthermore, we checked that the
results are very similar on Erd}os–Rényi networks (Fig.
2). Thus, the model introduced in ref. 1 does not pre-
dict that nor explain why “most COVID-19 infection
curves are linear.”
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Fig. 2. Statistics obtained via computer simulations of the epidemic spread on Erd}os–Rényi contact networks. The meaning of A–D and
parameters used in the simulations are the same as in Fig. 1 (excluding the parameter e, which does not apply here).
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Fig. 1. Statistics obtained via computer simulations of the epidemic spread on Poisson small-world random contact networks, defined in ref. 1.
Parameters are the same as in figure 3A in ref. 1 (d=4, e=0.3, andN=104). The simulation starts from 10 randomly infected nodes. All statistics
were obtained by averaging over M=103 realizations of the process, each with an independent realization of the random graph. (A) The SD of
daily cases; this panel confirms that we reproduce results from ref. 1 (see their figure 3A). In ref. 1, the low SDðCðtÞÞ regions are interpreted as
linear growth regimes. (B) The basic reproduction number as a function of the average degree of the network. The dashed line represents the
critical value R0 =1. Below the critical point, the outbreak dies out exponentially; our numerical estimates confirm R0 <1 in this regime. (C) The
outbreak duration Tend, that is, the average time elapsed between the onset of an epidemic and its end (defined as the first time at which there
are no infected nodes in the population). We observe a sharp peak around the critical point, confirming that the slow dynamics, consistent with a
linear growth, is only possible around the critical point. (D) The cumulative numbers of infections as a function of time (here r =0.1). The dashed
lines in D were obtained from the corresponding effective classical SIR models, which assume continuous time and homogeneous mixing.
Although the match is not perfect, the classical model can reproduce qualitative features of the network model studied in ref. 1.
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