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The concept of sense of agency (SoA) has garnered

considerable attention in human science at least in the past two

decades. Coincidentally, about two decades ago, artificial

intelligence (AI) research witnessed an explosion of proposed

theories on agency mostly based on dynamical approaches.

However, despite this early burst of enthusiasm, SoA models in

AI remain limited. We review the state of AI research on SoA,

seen predominantly in developmental robotics, vis-à-vis the

psychology and neurocognitive treatments, and examine how

AI can further achieve stronger SoA models. We posit that AI is

now poised to better inform SoA given its advances on self-

attribution of action–outcome effects, action selection, and

Bayesian inferencing, and argue that synthetic agency has

never been more compelling.
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Introduction
Sense of agency (SoA) has become increasingly significant

in philosophy, psychology, legal ethics and the cognitive

neurosciences [1,2��]. SoA is the subjective experience

that oneself initiates and controls its own actions and,

through them, the external world [2��]. Hence, SoA

grounds our sense of self, distinct from the world, and

all kinds of causally efficacious self-world interactions

mediated by our intentional actions. SoA has been posited

fundamental to the experience of volition, self-awareness

because of its self-other distinction, understanding the

causal structure of the world, and the social concept of

responsibility for one’s own actions (see Ref. [3�]). It is

therefore not surprising that SoA has also attracted the

attention of researchers in artificial intelligence (AI) who

aim to build autonomous, self-aware artifacts capable of

purposeful actions [4,5].
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Here lies the quandary. We strongly desire that we control

the technologies we use [6]. However, SoA in AI would

permit AI to have a subjective recognition of its own

agency. It may be the case that an AI with high SoA is

perceived as deterrent to our own SoA because we feel we

are being controlled by the AI. Hence, this dilemma of

joint human and synthetic agency might as well be front

and center of our discourse on human–AI interaction: the

pivotal point being an AI with high level of control leads

to a dystopic future.

It was the rise of behavior-based robotic AI in the 1990s

that catalyzed an outbreak of proposed theories on agency

that were mostly based on dynamical approaches [4], but

distant from the notions of subjective experience, cogni-

tion and intentionality. It is only recent that SoA, with

human science theoretical underpinnings, is being

adopted in AI. Consequently, concrete implementations

are limited so far. Most can be seen in cognitive devel-

opmental robotics [7], where the robot distinguishes itself

from the world to enhance its motor and cognitive skills

through sensorimotor predictive processes [8�,9]. How-

ever, the human science investigation of SoA reveals that

a full account of SoA should also consider non-sensori-

motor cues (e.g. background beliefs and environmental

cues) and ad hoc reasoning [10,11��].

We argue that AI research should rethink its treatment of

SoA and go beyond its current reach that only provides

incomplete forms of SoA. We put forward a simple, but

coherent, synthesis of key theoretical human science

treatments of SoA, and use this synthesis to make evident

the current state of AI research on SoA and why it is

lacking. However, we also believe that AI research

already has in its disposal the techniques and tools to

implement a more robust SoA. Hence, as we map perti-

nent AI components to major constituents of the synthe-

sis, it becomes evident that AI research is actually poised

to inform stronger models of SoA.

Synthetic agency in human–AI interaction
We mentioned that human and synthetic agencies to co-

exist harmoniously is a non-trivial problem. In instances

where the AI overrides human control, what then

becomes of human SoA? This agentive ambiguity in

human–AI interaction, which could degrade human

SoA, presents interesting challenges. We suggest the

answer lies in a two-pronged perspective of SoA in both

human and AI (Figure 1): first-person and second-person
perspectives (Fp and Sp, respectively). In Fp, the AI (or
www.sciencedirect.com
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human) possesses SoA intrinsically, that is, it could infer if

the outcome is caused by itself or someone (something)

else. In Sp, the AI (or human) could perceive the other’s

SoA through its model or mental representation of the

other’s Fp. Humans can be very liberal in ascribing to

artifacts that have no genuine intrinsic intelligence cer-

tain mental states or behavioral features as long as they

demonstrate minimal human features or adhere to a rule

of human social interaction (so-called intentional stance

[12] and anthropomorphism [13]). On the other side, AI

approaches for recognizing human intentions [14,15] and

actions [16], as well as inferring action–outcome causal

relations [17] exist. However, further advance would be to

quantitatively assess and manipulate human SoA. For

example, the AI could change its level of support to

the human adaptively, that is, to achieve its intention

without imposing, if human SoA decreases. For example,

it has been shown in Ref. [18] (see also Ref. [19]), albeit

not AI research, how human pilot’s SoA can be manipu-

lated by a flight simulator by varying its levels of auto-

mation, and measures both explicitly and implicitly the

pilot’s SoA relative to changes in automation level.

A goal is for AI to understand and adapt its Fp in order to

enhance, rather than undermine, human-Fp (Figure 2).

The dilemma is that by demonstrating a high Fp the AI

influences human-Sp, which consequently causes human-

Fp to decrease (Figure 2a). To resolve this, when AI-Sp is

influenced by the low human-Fp, the AI must then

carefully choose its next actions, or make no action at

all, to heighten human-Fp (Figure 2b). The AI, with an

understanding of its own Fp, can then better predict the

dynamics of human-Fp and efficiently increase it

(Figure 2c). Our main concern in this opinion piece is

AI-Fp. In the same way, for example, that although AI can

recognize and empathetically respond to human emotions

[20], some researchers continue to raise the prospect of AI

having actual emotions to better interact with humans
Figure 1
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Coupling of sense of agency (SoA) in human–AI interaction with first-person

possesses intrinsic SoA in Fp. In Sp, each has a model or mental represent
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[21]. We posit that with Fp an AI can better predict and

respond to human SoA.

Synthesis of SoA theories
SoA is especially sensitive to any disruption in the

smooth, harmonious flow of intentional actions [22] to

expected sensory outcomes, that is, along the intention–
action–outcome chain [23]. Disruptions along this chain can

therefore inform loss of SoA. Thus, explaining SoA

depends on identifying how it emerges from or gets

disrupted in this chain.

The two most influential theories are the comparator

model (CM) [24] (Figure 3a) and retrospective inference

(RI) [25] (Figure 3b). Although originally a theory of

motor learning and control, the CM’s relevance to action

awareness has been widely discussed. According to the

CM, motor action is accompanied by a prediction of its

outcome that is generated based on the copy of the motor

command. This prediction is compared with the per-

ceived sensory outcome: if there is no mismatch, then

the outcome is registered as self-caused; otherwise, a

disruption of SoA occurs. In contrast, RI rejects the strong

involvement of sensorimotor mechanisms and posits that

SoA results from cognitive sense-making processes. Spe-

cifically, SoA is inferred whenever there is congruence

between the intended or logically expected outcome and

the perceived outcome. While predicted outcomes

emerge from sensorimotor processes before action (i.e.

prospective), intended outcomes and thoughts are evalu-

ated after action–outcome effects have been experienced

(i.e. retrospective).

The multifactorial weighting model (MWM) [10]

(Figure 3c) sought to find a compromise  between the

CM and RI [26], but more importantly to overcome the

biological and explanatory disadvantages of the CM, for

example, it could not explain agency during phantom
n
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(a)

(b)

(c)

Fp

Fp

Fp

Fp

Fp

Fp

Sp

Sp

Sp

Sp

Sp

Sp

Human

Human

Human

Al

Al

Al

Action

Action

Current Opinion in Behavioral Sciences 

Dynamics of the first-person and second-person (Fp and Sp,

respectively) perspectives of SoA in human–AI interaction. (a) The

dilemma is that an AI simply demonstrating high SoA may reduce

human SoA because the human perceives the AI to be controlling

him/her. (b) The AI, upon perceiving the decrease in human SoA, must

then carefully choose its next actions, or perhaps perform no action at

all, to increase human SoA. (c) The AI, armed with an understanding

of both human and its own SoA, can then better respond to improve,

rather than erode, human SoA.
limb movements and thought insertions in schizophre-

nia (see Ref. [10] for details). According to MWM, SoA

is separated into the feeling and judgment of agency

(FoA and JoA, respectively). FoA is described as

implicit, pre-reflective, low-level (involves sensorimo-

tor processes), and non-conceptual, that is, it operates at

the hem of consciousness [26]. Its components are

similar to those of the CM. In contrast, JoA is described

as explicit, interpretative and conceptual. It is based on

FoA, but also on higher-order (cognitive) factors such as

external contextual and social cues, as well as internal

intentions and thoughts akin to the RI. Hence, FoA is

computed mainly at the sensorimotor level without

needing the concept of self and others, and JoA

depends on logical inference and distinction of self

and others [10]. According to the MWM, SoA arises

from the constant weighting of agency cues according to

their reliability.
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The major criticism to the MWM is that its initial account

was ambiguous to how the brain assigns the weights and

integrates agency cues in context-dependent situations.

The Bayesian cue integration theory provides the math-

ematical foundation to realize this [27,28]. Here, SoA is

formalized as a weighted combination of agency cues

from different modalities, and each weight is a function

of the accuracy in each modality. Moreover, and impor-

tantly, the weighting may be altered by prior knowledge

or expectation, implemented as Bayesian priors, that may

pertain to predictive sensorimotor signals or cognitive

cues and action–outcome causal relations.

Lastly, another recent theory gaining traction is that a

signal about the fluency of action selection can prospec-

tively inform SoA [23] (Figure 3d). According to this

theory, SoA is expected to increase when actions are

freely chosen as opposed to actions that are instructed

[29], coerced [30], or triggered involuntarily (e.g. by brain

stimulation) [2��]. SoA is also expected to decrease when

intentions that conflict with the about to be executed

intention arise [23]. Others found SoA to increase with the

number of alternative actions leading to the same out-

come, and with the ability to select between actions with

different foreseeable consequences [29].

We synthesize the theories above to show a coherent

integration of prospective and retrospective components

informing FoA or JoA (Figure 3e). On a sensorimotor

level, the prospective account consists of sensorimotor
priors [28]. These are agency cues in sensorimotor format

that may be predictive (e.g. efference copy and internal

predictions based on it) or they are not based on the

predictability of the action outcome (e.g. conflict in

intention and action fluency). Depending on the context

and the environment, these internal signals can directly

lead to FoA. On other occasions, internal predictions are

compared to actual outcomes for retrospective FoA. At

the higher level, the inference mechanism uses cognitive
priors to inform JoA retrospectively. It is important to

realize that these influential and recent theories were not

derived from a vacuum, rather, they have been validated

empirically to suggest their viability. Our synthesis can

serve as ‘roadmap’ for an AI research to locate its position

and from there rethink on how to gain more theoretical

grounds to achieve stronger models of SoA.

We have explained thus far how SoA emerges or is

disrupted along the intention–action–outcome chain.

SoA, however, is phenomenologically thin, that is, we

are most of the time only minimally aware of our agency

when we act [1], which makes SoA hard to measure. This

has prompted experimentalists to develop paradigms to

measure it, which are either explicit or implicit [31].

Explicit measures directly ask subjects to report their

agentic experience (e.g. whether the movement was

theirs or not or how much they felt their action caused
www.sciencedirect.com
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Figure 3
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Synthesis of influential and recent theories on the human science treatment of sense of agency (SoA). The colors highlight the theories. The

comparator model (a) and retrospective inference (b) are most influential. The former hinges on matching perceived sensory outcomes to

predicted outcomes that emerge from sensorimotor processes to inform SoA, and the latter relies on the congruence of perceived and intended

outcomes, or related thoughts, when inferring SoA. The multifactorial weighting model (c) posits that SoA arises from the constant weighting of

agency cues according to their reliability, and distinguishes between the feeling (FoA) and judgment of agency (JoA). More recently, a signal on

fluency of action selection (d) has been theorized to prospectively inform SoA. We synthesize these theories, in (e), to show the prospective and

retrospective components informing agency. The prospective account consists of sensorimotor priors, which may directly inform FoA. At other

times, internal predictions are compared to perceived outcomes. At the higher level, the inference mechanism uses cognitive priors to

retrospectively inform JoA. Figures (a), (c), and (d) are based on Refs. [43], [44], and [45], respectively.
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the outcome). Self-reports, however, are subject to cog-

nitive biases and often blurred by unconscious thoughts.

Implicit measures, in contrast, use perceptual differences

between intentional and unintended action–outcome

effects to measure SoA than directly ask about agentic

experiences. The scientific consensus now is that inten-

tional binding [32], that is, the perceived time of action

and outcome shifted toward each other when SoA is high,

is a robust implicit measure of SoA.

AI is poised to inform Fp SoA
The influence of the comparator model has reached

developmental robotics, which allows for self-attribution

of action–outcome effects in robots [8�,9]. A notable

example is ego-noise attenuation, said to be one of the

biggest and most unexplored problems in robot listening

[9]. Ego-noise is the sound that the robot makes when

moving. It has been shown that the incongruence of its

proprioceptive information to the perceived ego-noise

generates bigger prediction errors, which disturbs the

robot with self-generated ego-noises. Self-organizing

maps and multilayer perceptrons have been used to

construct the forward model. Because of the CM’s signifi-

cance to motor learning and control, and SoA, it is

understandable why it attracted focus in robotic SoA.

As we explained above, however, the CM alone is insuf-

ficient to account for a full SoA.

When its SoA is disrupted, the AI would need to infer the

cause and explain the nature of the disruption. Causal

inference in AI research, albeit not focused on SoA, is not

new and still well posited to revolutionize AI [33]. Pearl

has recently postulated a three-layer causal hierarchy

[33,34], and argues that it overcomes problems that

machine learning has yet to hurdle, specifically, under-

standing and explaining cause–outcome relations. The

causal hierarchy finds statistical relationships (correlation

but not causation), intervention (causal effects), and

counterfactuals (retrospective and explanatory). We posit

that the last, which subsumes the other two [33], is

imperative to Fp SoA. For example, if a boy missed a

target with a toy gun but the target fell, he would have

lower SoA if there were other kids shooting. But if he was

alone, he would infer that his action caused the target to

fall, and consequently have high SoA.

Studies that cast SoA as optimal Bayesian cue integration

have yet to provide the mathematical elucidation. How-

ever, in a recent work [3�], the authors formalized SoA by

drawing parallels from a Bayesian inference of the ventril-
oquism effect that estimates a common cause behind its

multisensory integration. Their Bayesian model was able

to concisely reproduce the intentional binding experi-

ment. More importantly, the model explained the under-

lying computational mechanisms that drove this inten-

tional binding effect. They theorized SoA as the confidence
in causal estimate (CCE): it is high when action–outcome
Current Opinion in Behavioral Sciences 2019, 29:84–90 
sensory signal is consistent with prior knowledge that the

action causes the outcome, the causal belief is strong, and

the action and outcome signals are reliable. This notion is

consistent to SoA emerging from action–outcome consis-

tency and from the reliability-dependent integration of

different agency cues. Furthermore, they postulated CCE
to fit the notion of FoA: it is a multimodal integration

process that lies at the center of obtaining a Bayesian

causality inference and does not attribute causality to any

other agent. JoA, that is, judgment on causality, is made

by comparing CCE with the confidence in acausal esti-

mate, and SoA is attributed if CCE is higher.

Finally, action selection and intention conflict resolution are

widely investigated topics in AI, but have not been investi-

gated for the purpose of SoA in AI. Intention conflict

resolution in AI has been demonstrated by both single (e.

g. Refs. [35,36]) and multi-agent (e.g. Refs. [37,38]) rein-

forcement learners. Most of these learners would treat

intention as an extra parameter, which means that conflict

of intention can be detected if the agent is taking an action

with a different intention parameter value. Action selection

has been modeled as action planning using Markov decision

processes, as well as model-based, model-free or combined

reinforcement learning methods to learn policies [39,40].

The issue is how to quantify the fluency of action selection.

This can be quantified relative to the number of alternative

actions made available to efficiently optimize control.

Another is touse theentropyofactionselectionprobabilities,

forexample, if thetypical softmaxoutput layer isassumedfor

action selection probabilities, then fluency is related to the

temperature parameter [41], that is, higher temperature

means softer probability distribution and lower fluency.

Conclusion
Empirical evidence in human science demonstrates that

the degradation of SoA characterizes certain psychiatric

and neurological disorders [27,42,44]. These hinder the

patients’ ability to normally function mentally, emotion-

ally or socially. Analogously but to a lesser extent, faced

with an AI that is capable of volition, self-awareness,

causal understanding and sense of social responsibility,

an AI that is lacking SoA may be perceived as suboptimal

and less sufficient in comparison since it lacks such

capabilities. This should not be the case in the near

future since, as we posited here, AI can readily draw

knowledge from human science and use its advanced

tools to realize stronger models of SoA. Perhaps, more

robust studies on synthetic agency may later on inform

better examinations of human SoA.
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