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Spontaneous, synchronous bursting of neural population is a widely
observed phenomenon in nervous networks, which is considered
important for functions and dysfunctions of the brain. However, how
the global synchrony across a large number of neurons emerges from
an initially nonbursting network state is not fully understood. In this
study, we develop a state-space reconstruction method combined
with high-resolution recordings of cultured neurons. This method ex-
tracts deterministic signatures of upcoming global bursts in “local”
dynamics of individual neurons during nonbursting periods. We find
that local information within a single-cell time series can compare
with or even outperform the global mean-field activity for predicting
future global bursts. Moreover, the intercell variability in the burst
predictability is found to reflect the network structure realized in the
nonbursting periods. These findings suggest that deterministic local
dynamics can predict seemingly stochastic global events in self-
organized networks, implying the potential applications of the pre-
sent methodology to detecting locally concentrated early warnings of
spontaneous seizure occurrence in the brain.
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The collective firing dynamics of neural population have been
related to emergent functions and dysfunctions in the brain.

Unraveling the structure of dynamics emerging from the col-
lective behavior of neural networks is an ultimate issue in studies
of complex systems (1). The simplest and most profound exam-
ple of collective dynamics is synchronous burst: the simultaneous
occurrence of closely spaced action potentials (“bursts”) across a
large number of neurons in the network. Within neural circuits
in vivo, the synchronous bursts are believed to serve important
roles in information storage and transmission (2, 3) as well as in
disease states including epileptic seizures (4–6). Intriguingly,
neurons cultured in vitro also display spontaneous synchronous
bursts akin to those observed in vivo (7–9). This indicates that
the collective bursting is a universal behavior of neural networks
in a wide variety of preparations, for which new approaches to
understanding its foundations are much needed (1, 10, 11).
Classic biophysical models of the synchronized bursts assume

broadly diverging synaptic interaction that propagates activity of
a single cell to the remaining neural population (4, 12–14). This
view has been partially supported by experiments demonstrating
that stimulating a single neuron can change the large-scale dy-
namics of neural populations (15–17). These models and ex-
periments suggest a close link between single neuron activity and
the global state of a neural population. On the other hand, the
previous stochastic models do not specify when a global burst
occurs; forecasting a spontaneous occurrence of synchronous
burst from the preceding individual neural activities in non-
bursting states remains a highly challenging issue, particularly in
real nervous systems which feature the heterogeneity of local–
global coupling (e.g., nonuniform coupling strength between
individual neural activity and the overall firing of the population)
(18). Indeed, recent studies demonstrate potentially diverse dy-
namical mechanisms accompanied by complex but reproducible
patterns of activity sequences leading to the synchronous bursts

(11, 19), implying the existence of nonlinear deterministic
mechanisms around the burst initiations.
The present paper investigates the deterministic aspects of burst

initiation. In particular, we question whether individual neuron
dynamic in nonbursting periods can predict an upcoming synchro-
nous burst in cultured neural population, which provides a simplest
model system of self-organized neurons. To cope with the hetero-
geneous nature of local–global coupling, we introduce an model-
free forecasting method based on a nonlinear state-space recon-
struction technique. The method extends the data-driven nonlinear
forecasting techniques (20–25) to characterize the global–local
correspondence in network dynamics, and reveals the deterministic
relationships among individual neuron traces and the global state.
Using this method, we report that dynamic of only one neuron can
robustly predict the upcoming synchronous burst in the neural
population, at high signal-to-noise ratio. Surprisingly, the burst
predictability with an appropriately chosen neuron even outper-
forms that with the global (i.e., population mean-field) activity of
neural population, demonstrating that macroscopic fluctuation
of neural population is better predicted by the microscopic dynamic
of a specific single cell, rather than the macroscopic state itself. This
phenomenon is explained based on the heterogeneous causal in-
teractions among neurons. The present findings demonstrate the
effectiveness of the nonlinear state-space reconstruction techniques
for analyzing the causal coupling in in vitro system dynamics.

Results
Spontaneous Synchronous Bursts in Cultured Neurons. Rat cortical
neurons were grown on high-dense complementary metal–oxide–
semiconductor (CMOS)-based multielectrode arrays (MEAs) for
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This paper reports an approach to detecting the “early warn-
ings” of upcoming global state transitions in a network based
on its local dynamics, demonstrating that seemingly stochastic
global events can be predicted by local deterministic dynamics.
Based on the method using a nonlinear state-space recon-
struction, we show that, surprisingly, dynamics of individual
neurons can robustly predict the upcoming synchronous burst in
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reveal basic properties of the bursting network dynamics.
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12–41 d in vitro (Fig. 1A) (26, 27). The devices allow us to simul-
taneously stimulate and record from multiple neurons lying on the
array surface at a high spatiotemporal resolution (Methods). Each
recording yielded simultaneous traces of 60–98 cells at a temporal
resolution of 2 kHz. Fig. 1B shows the cell distribution recorded
with a representative array preparation. In our preparations of
sparse culturing, the cell bodies were well isolated, and the action
potential of each cell was identified accurately based on its spatial
location and waveform. Spike action potentials were detected using
standard LimAda method (28).
We first analyzed the spontaneous activities of the recorded

neural population. During the spontaneous firing, the neurons
showed intermittent synchronous bursts, which were interleaved
with silent periods (Fig. 1C). To describe the macroscopic network
dynamics, we defined population activity by the mean firing rate
across all recorded neurons (Fig. 1D). The synchronous bursting
period was defined by time bins in which the population activity
exceeded a threshold determined for each preparation, according
to the previously established method based on interspike interval
distributions (27) (Fig. 1D, Inset). The timing of synchronous burst
occurrence did not show any clear periodicity. Duration of bursts
varied from about 200 to 800 ms. The different preparations
showed distinct complex patterns of collective activity dynamics
when visualized with standard dimensionality reduction tech-
niques such as principal component analysis (Fig. S1).

Predicting Global Network Bursts. To capture the potentially com-
plex temporal structures in neural activities around bursting dy-
namics, we developed a model-free method that is able to quantify
the general relationships between the network and single-element
dynamics in high-dimensional nonlinear systems. The present pro-
tocol is based on the state-space reconstruction using the delay-
embedding theorems in deterministic dynamical systems (29, 30).

The method can be interpreted as an application of the previous
nonlinear forecasting methods, known as “simplex projection” (20)
and “convergence cross-mapping (CCM)” (31), but here applied
in a cross-scale domain with time delays and targeting at a spe-
cific global event. It extends/integrates the previous methods in
three aspects. First, the method focuses particularly on the re-
lationships between a global state variable (e.g., the mean-field
variable) and local variables. Second, the method quantifies the
predictability of the global variable based on temporally distant
dynamics of each local variable. Third, it constructs a detector of
a specific global event (e.g., the spontaneous synchronous burst)
through bidirectional mappings between the global and local
variables. Because “targeting” a specific global event is a prominent
feature of our present approach, we will sometimes mention the
method parsimoniously as “event-targeted CCM (eCCM)” in what
follows. Note that the idea of mapping variables under time delays
is also found in previous studies (23). In addition, the general
problem of how the nonlinear signals in time series are affected by
scale has also been discussed in other contexts (20, 24, 25). Below
we summarize our basic protocol for the eCCM analysis.
Fig. 2 illustrates the analytic protocol (further details are

provided in Methods). We first reconstruct the dynamics of
population activity and each single-neuron activity, respectively,
in delay-coordinate state spaces (Fig. 2 A and B):

bdt =
�
bt, bt-τ . . . , bt-ðd-1Þτ

�
, [1]

xdi,t =
�
xi,t, xi,t-τ . . . , xi,t-ðd-1Þτ

�
, [2]

where bt, and xi,t are the population mean-field and neuron i’s
activity at time t, respectively; d denotes the embedding dimen-
sions (the number of delay coordinates); τ is the unit delay size.
In this study, the local time series xi,t was defined by each neuron
i’s spike train smoothed with a Gaussian kernel, and bt was de-
fined by the mean of xi,t over all of the simultaneously recorded
neurons (Methods). For convenience, we refer to bt

d and xi,t
d as

the “global” and “local” state trajectories, respectively. We mea-
sure the accuracy of synchronous-burst prediction by seeking
“presages” of global bursts in each local state trajectories, based
on the accuracy of forecasting using a nearest-neighbor model
(Fig. 2A; see also the figure legend for a step-by-step description
of the protocol). The rationale behind this protocol is as follows:
if neuron i has enough information to predict the future synchro-
nous burst occurring after a time span −Δt (−Δt > 0), neuron i’s
state up to time −Δt before the targeted burst should be already
differentiated from the states without any future bursting, form-
ing a cluster of states that deviate from those predicting non-
bursting periods in the reconstructed state space. This early
warning is detected by finding the bidirectional maps between
the targeted global event (i.e., the synchronous burst) and the
local states (i.e., single-neuron dynamics) as illustrated in Fig.
2A. Similarly, we define the accuracy of “postdiction” of bursts
(i.e., detecting a burst event based on neural activities after its
occurrence) with the same protocol as that for prediction except
for using time span Δt with a positive value. We iterated this
procedure for all of the neurons to characterize the burst predict-
abilities in individual neurons. In addition, we quantified the “self-
predictability” of the mean-field activity by replicating the above
procedure based on its own (global) state trajectory bt, instead of a
local state trajectory in individual neurons xi,t (Fig. 2B).
Using this method, we investigated the predictability of syn-

chronous bursts based on the individual neural activities or the
population mean field. In particular, we addressed two key
questions: (i) how accurately can each single neuron predict the
future synchronous burst events, and (ii) if a subset of neurons
predicts synchronous bursts better than others, how are they
related to the underlying neural network structure?
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Fig. 1. Global bursts in cultured neural populations. (A) CMOS-based re-
cording apparatus. (B) Spatial distribution of cells recorded in a represen-
tative preparation, Chip 1440. (C) Spontaneous activity of neurons in the
same preparation, Chip 1440. The color indicates the spike count within each
5-ms time bin (white: 0 spikes; black: >5 spikes). The abscissa represents the
time. The majority of neurons fired together during network bursts (columns
of dark-colored bins). (D) The temporal evolution of global mean field
(normalized population firing rate) computed from C. The horizontal dashed
line indicates the threshold for burst detection for this preparation. (Inset)
The distributions of interspike intervals (ISIs) in five different preparations
(solid lines) and the burst-detection thresholds for the individual prepara-
tions (dashed lines). The horizontal axis shows the normalized log-ISI (the
logarithm of inverse global activity; Methods).
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Single-Neuron Dynamics Can Predict Global Network Bursts. First, we
asked how accurately individual neurons predict (or postdict) the
occurrence of synchronous bursts, and how their predictions
compare with that based on the population mean field, which
defines synchronous burst. We quantified the rate of successful
synchronous-burst predictions in each single neuron with keep-
ing the false-positive rate at 5% (Methods). Interestingly, in some
cells (e.g., Fig. 3A), the rates of successful burst predictions
based on the eCCM analysis could be relatively high (>50% of
trials) even when the network appeared to be silent in terms of

the global mean-field firing rate (Fig. 3D, −1,000 ∼ −500 ms).
Corresponding to this, the success rate of burst detection using a
single-neuron dynamic in the eCCM could be even higher than
that with the global mean-field dynamics (Fig. 3B). The pre-
dictability of burst occurrence varied among neurons, suggesting
the heterogeneity of burst predictability across neurons. How-
ever, the accuracy of predictions in individual neurons was highly
consistent among different sets of burst trials within each prep-
aration (ρ = 0.79 ∼ 0.93, P < 2 × 10−23, Spearman’s rank cor-
relation between the first and the second halves of trials; Fig.
3E), demonstrating that this cell-to-cell variability reflects a ro-
bust property of each neuron. Across all of the preparations,
about 1/3 of neurons were found to predict synchronous bursts
robustly better than population mean field over some prediction
span, Δt (Fig. 3G). Note that the prediction by mean field is not
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Fig. 2. eCCM analysis relates the global-network events to the preceding
local states through the state-space reconstruction. (A) Forecasting by a local
signal. In each box, the left and right trajectories depict the delay-coordinate
reconstruction (see the text) of the mean field (global state) and of a single-
neuron activity (local state), respectively. A representative neuron (Cell 1) is
shown. Dark-blue dots: the time points of peak global activities during the
bursts; magenta dots: the temporally preceding states from the individual
global-activity peaks (here, shift time = −100 ms); magenta dots: the
neighboring states within the reconstructed state space for Cell 1 (10 nearest
neighbors for each burst peak); cyan cross: the output of the present pro-
tocol (i.e., the predicted mean field). A single neuron’s ability at predicting
each burst event is quantified in five steps: (i) selecting a time point t on a
local-state trajectory (say, of neuron i) that corresponds to a peak pop-
ulation activity found in the global-state trajectory (which is a target
bursting state to be predicted), (ii) tracing back the local-state trajectory for
a given time span, Δt, (iii) collecting “neighbor” time points corresponding
to states nearby t − Δt in the local-state trajectory (avoiding points tem-
porally too near), (iv) mapping the neighbor time points back into the
global-state trajectory, and (v) forwarding the time with Δt on the global-
state trajectory to obtain the global-state prediction (the cyan cross). When
the global-state prediction deviates from the nonbursting-state distribution
by having a significantly large value, we defined it as a successful detection
of burst (refer to Methods for formal descriptions). The accuracy of burst
prediction is higher when the traced-back states (the red dots) deviate more
from the ones in the nonbursting period in the local trajectory. Although the
combination of tracing time in the retrograde direction with Δt (step ii) and
mutual mapping between global and local states (steps i and iv) are newly
introduced features in this study, step v alone could be regarded as a variant
of the previously proposed forecasting methods based on simplex projection
(20). On the other hand, if steps iii–v alone are applied (i.e., without any
constraint of the targeted event, unlike our current protocol with steps i and
ii), it reduces to the CCM algorithm including time delays (23, 31) but applied
to the cross-scale predictions. (B) Forecasting by a global signal. The same as
in A, except that the global state itself is used instead of the local state.
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Fig. 3. Presages of global bursts within single neurons. (A) Burst detection
with the eCCM based on a single representative neuron. The black trace with
the gray shade represents the median and quartiles of the estimated global
states, b̂t, in individual trials around burst peaks. The burst-detection
threshold (dashed green line) was defined by the 95th percentile of the
estimated global activity outside the bursting period. The red curve shows
the fraction (“hit rate”) of successfully detected bursts in all of the burst
trials. The curves are smoothed with 250-ms boxcar kernel for the visuali-
zation. Δt takes a negative value when predicting and a positive value when
“postdicting” burst events. (B) Burst detection with the eCCM based on the
mean-field activity in the population. (C) Burst detection with the momen-
tary firing rate (FR) of the same representative single neuron as the one
shown in A. (D) Burst detection with the momentary mean-field firing rate.
(E) Burst predictability is a robust property of individual neurons. Dividing
the data into two halves (the odd and even trials of spontaneous burst)
shows that variability in burst-detection success rate is highly consistent over
time. Each marker corresponds to a neuron. The filled markers represent the
results using the mean-field activity. The success rate was averaged over the
range of time span −200 ms < Δt < −50 ms. (F) Burst detection with the eCCM is
more accurate than that based on themomentary firing rate. The comparison of
success rates in burst detection with the eCCM and with the firing-rate-based
method. (Inset) The control analysis in which we compared the success rates of
the eCCMwith that of the firing-rate-based method using multiple time bins, by
matching the number of bins used in the eCCM. The gray bars show the fraction
of cells in all of the preparations. The arrowheads indicate the medians. The
colored lines show the fractions in the individual preparations. (G) A single cell
can outperform the mean field at predicting the spontaneous network bursts,
particularly when we use the information in the temporal patterns of neural
activity rather than the momentary activity. The light- and dark-blue curves,
respectively, show the success rates in burst detection with single neurons rel-
ative to that with the mean field, for each of the eCCM and the firing-rate-
based analysis. For each method, the cells were sorted based on the success rate.
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equal to the average performance of single neurons. How a
single neuron can better predict the mean field than the mean
field itself does is a nontrivial issue.
The fact that a single neuron can compare or even outperform

the population mean at predicting the mean-field dynamics
may appear surprising, considering that the single-cell activities
fluctuate due to spiking much more than the mean-field activity
(e.g., compare the black traces in Fig. 3 C and D). However, it is
explained by the delay-embedding theorems (29, 30) that the
global state information could be reconstructed from observation
of time series in a single variable participating in the dynamical
system (Fig. S2). The present result suggests that such a math-
ematical property can be demonstrated in a biological system.
Importantly, to reconstruct the global state required, we need to
observe multiple time points rather than the momentary state in
the time series of the observed variable (which is why the theo-
rem is called “delay-embedding” theorem). It suggests that the
information about the global state is carried by the temporal
patterns including multiple time points, rather than momentary
snapshots of activity in neurons.
To explore the importance of temporal patterns of activities in

predicting bursts compared with the momentary firing rates, we
compared the obtained prediction accuracy with an analogous
index based on momentary firing rates, xi,t or bt (the red traces in
Fig. 3 C and D, respectively; see alsoMethods). In single neurons,
the eCCM tended to provide more accurate predictions than the
momentary-activity-based method (P < 5 × 10−14 in all of the
individual preparations, sign test with paired samples; Fig. 3F).
This superiority of the eCCM to the momentary firing rate is not
likely to be due to the difference in the sampled spike numbers
because it remained even if we lengthened the bin size for
computing activity so as to have the same total duration as used
in the eCCM analysis [P < 6 × 10−3 in all of the preparations
except for Chip 2427 (which had much lower firing rate than
others), sign test with paired samples; Fig. 3F, Inset]. Finally,
when we used the momentary firing rates instead of the eCCM
based on temporal sequence, the fraction of cells whose burst
detectability outperformed that of the mean field reduced from
∼1/3 to ∼1/5 (Fig. 3G). Together, these results suggest that the
temporal patterns of neural activity, not only momentary activity,
are crucial for early detection of synchronous bursts.

Burst Predictability Reflects Network Structures Realized in Nonbursting
Periods. Next, we examined whether the predictability of synchro-
nous bursts corresponds to any specific network structure defined
by synaptic interactions. The structural correspondences of burst
predictability were investigated in three steps (Fig. 4): we first
reanalyzed the nonbursting spontaneous activities to infer the di-
rected causal network structure; next, the inferred causal networks
were verified by comparing them to synaptic interactions measured
by an additional electrical stimulation experiment with the same
preparations; finally, we related each neuron’s network connec-
tivity with its burst prediction accuracy.
In the causal network analysis, we applied a previously pro-

posed method that is capable of detecting nonlinear coupling
(31) (Methods). Theoretically, the method detects causal inter-
actions including indirect ones (32). Applying this method to all
of the neuron pairs showing nonbursting spontaneous activities
yielded a matrix that represents pairwise, directed interactions
within each preparation (Fig. 4A).
The relevance of the inferred causal couplings to synaptic in-

teractions among neurons was verified using an independent
dataset in which synaptic interactions were directly measured (Fig.
4 B and C). The present CMOS-based MEA system allowed us to
stimulate the neural tissue local to given electrodes at submilli-
second accuracy, directly activating a single neuron’s soma at a high
temporal precision with few artifact (26) (Fig. S3). A subset of
neurons was electrically stimulated while the evoked activities in

other neurons were monitored simultaneously. According to the
evoked response latencies, we identified the short-latency (<10 ms)
and long-latency (≥10 ms) downstream cells for each stimulated
neuron (Fig. 4C), between which the latter was expected more
likely to include multisynaptic interactions and thus weaker causal
effects. As expected, we confirmed that the causality inferred based
on nonbursting spontaneous data consistently reflected the identi-
fied short- and long-latency interactions (Fig. 4B). Specifically, the
inferred causality differentiated the short- and long-latency down-
stream cells from the remaining population (P = 0.0001, sign test,
data pooled across all of the preparations). This result also provides
an empirical validation for the causality inference with nonlinear
state-space reconstructions such as CCM (31), by directly relating
the causality extracted from the dynamics to the one defined by the
manipulation experiment. Based on these confirmations, we used
the inferred causality as proxies for the effective synaptic interac-
tions in the network during the nonbursting periods.
Finally, we compared these causal network structures and the

burst predictabilities, finding that the burst predictability in each

A B C

D

Fig. 4. Network structures in nonbursting periods explain the local burst
predictability. (A) Causal network analysis. The network depicts the directed
pairwise interactions among neurons. The filled (orange) and open (blue)
markers represent the putative excitatory and inhibitory cells, respectively.
The thickness of arrows indicates the absolute strength of causal coupling
(“causality”). For clarity of illustration, only the top 5% strong couplings are
shown, and the nodes are distributed by multidimensional scaling with the
distances defined to be inversely proportional to the causality. The figure
shows the result for Chip 1440. (B) Synaptically connected neuron pairs show
larger causal interaction. The bar labels show the time span to be used for
the causality analysis. Bars in dark- and light blue: average cross-embedding
values for cells that showed short-latent (dark, latency <10 ms) and long
(dark, latency> 10 ms) stimulus-triggered spike increase. The average cau-
sality index within time span [−100, 100] ms dissociated the postsynaptic cells
from other cells (P < 0.005, Wilcoxon sign rank test, independent samples).
The error bar shows the SEM across neurons. (C) Identification of synaptic
connectivity by electrical stimulation experiment. The figure shows the peri-
stimulus time histograms of three representative neurons (from top to
bottom, putative direct, indirect, and nonpost cells, respectively). The as-
terisks indicate the earliest significant increase (P < 0.05) of spike count,
compared with the spike-count distribution in the prestimulus period
(from −500 to −100ms). The figure shows the spike histogram smoothedwith a
boxcar kernel of 5-ms width for visualization purpose. (D) The relationship
between burst predictability and the interaction strength in different neuron
types (putative excitatory and inhibitory neurons). The neurons were classified
into two groups depending on the strength of input or output causal couplings:
the top half of neurons was labeled as “strong,” whereas the bottom half was
labeled as weak. The error bar shows the SEM across neurons.
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neuron displayed a positive correlation to the average inferred
causality between it and the other neurons (Fig. 4 D and E). We
also classified putative excitatory and inhibitory neurons based
on the spike waveforms (SI Methods, Fig. S4). Interestingly, the
excitatory neurons predicted bursts better than the inhibitory
neurons when we compared the neurons showing strong causality
(P < 0.002, both for the causality for input and output connec-
tions, rank sum test), but such cell-type dependence was unclear
in the neurons having weak interactions (P > 0.5, Fig. 4D). These
results suggest that the stronger network interaction via excit-
atory cells underlies the higher burst predictability. The above
results together led us to conclude that the cell-to-cell variability
in burst predictability is likely to reflect the heterogeneous net-
work structures that shape nonbursting activity dynamics.

Discussion
In this study, we have focused on the relationship between local
and global neural properties by analyzing how single-cell activity
predicts the population mean-field dynamics. This could also be
interpreted as an implementation of generalized Takensʼ theo-
rem with general observation functions of a dynamical system
(33), subject to limited data size and noise (34). The method
revealed the heterogeneity of neurons also in the predictability
of upcoming occurrence of a synchronous burst of a neural
population, which is temporally distant on the order of 100 ms.
The bursts were predicted accurately by dynamics of some single
neurons. Remarkably, such neuron even outperformed the
population mean-field dynamics itself in terms of prediction
accuracy, particularly when we extracted the information em-
bedded in the temporal patterns of neural activity rather than the
momentary firing rates. From causal network analysis combined
with the electrical stimulation experiment, the heterogeneity of
burst predictability was explained by the structures of neural
networks: the “hub”-like neurons having stronger synaptic in-
teractions with other cells can better predict the upcoming global
network burst than others. It means that, even without observing
any burst events or measuring burst predictabilities in each
neuron, we can predict to some extent which neurons should be
used to forecast the bursts by looking at the causal network. In
addition, the present results based on the cultured neurons indicate
the heterogeneous relationships between single neurons and pop-
ulation activity are basic properties observed in the nervous net-
work that is self-organized without external stimulus. We also
found that the excitatory neurons in the network hub better predict
the bursts than the inhibitory neurons. This could reflect the
functional asymmetry between the cell types: the activity of specific
excitatory neurons may be sufficient for a burst, thus making them
good predictors. In contrast, inactivity among inhibitory neurons
may be a necessary but not a sufficient condition for a bursting
event and thus less useful as predictors.
Classic models of the synchronized population burst assume

diverging interaction that propagates activity of a cell to the
other cells (4, 12–14). A variant of this model features “ava-
lanche”-like bursting sequences, which models synchronous burst
with noise being amplified and propagated through the network
(9, 11, 35–39). These models, focusing mainly on the stochastic
aspects of burst initiation and propagation, have found successes
in explaining a variety of statistical properties of bursting neural
networks. On the other hand, it has been challenging to predict
the occurrence of synchronous burst, partially because they can
be triggered by complex and heterogeneous mechanisms (40).
The present study focuses on deterministic aspects of the neural
population dynamics, with which the burst occurrence is pre-
dictable to the extent based on a preceding single-neuron ac-
tivity. The existence of specific neurons predicting the upcoming
burst is also consistent with the previous idea of “leader neu-
rons” that fire at the beginning of bursts (8, 41). Notably, how-
ever, the predictor of the global burst is not identical to the

increased activities in those single neurons as expected from pre-
vious studies (15, 37, 41), because the magnitude of firing rate
alone is not sufficient to explain the highly accurate predictability
based on the eCCM analysis (Fig. 3E). Rather, the earliest pre-
sages are likely to be embedded in the dynamical patterns of those
neurons. On the other hand, not everything is predictable in a
deterministic manner before the burst occurrence. For example,
the trial-to-trial fluctuation in burst size was not predicted from
preburst dynamics (ρ = −0.289 ∼ −0.077, P > 0.4, Spearman’s rank
correlation between the odd and even trials), suggesting that the
burst size is determined by stochastic mechanisms (11, 39).
Finally, the predictability of upcoming burst occurrence based

on single-cell dynamics suggests a potentially effective method-
ology to capture the early warnings of population-state transition
in a variety of networks, including epileptic seizures in the brain
(5, 42), rumor propagation in social networks (43–45), or epi-
demic spreading in human networks (46, 47). In clinical pur-
poses, for example, accurate prediction and characterization of
pathologically synchronized neural firing is an important issue (5,
42). Although nonlinear features of field potential sequence
have been proposed as useful markers of epileptic state (42, 48–
51), the predictability of global dynamics based on single-neuron
activity has not been thoroughly studied. In particular, the pre-
sent study suggests that single neuron could even outperform the
direct observation of global state itself in predicting the global-
state dynamics. In principle, the same framework could be ap-
plied to study other network events than the synchronous burst,
such as the changes in more complex correlation patterns among
neurons. The success of the present state-space reconstruction-
based method implies a new approach to detect the early warnings
of transitions in global-network state based on local rather than
global features. However, it should be noted with an emphasis that
the in vivo neural dynamics are generally much more complex; not
necessarily all of the in vivo dynamics show the same properties as
what are observed in vitro. Nonetheless, our analytic protocol can
be applied to in vivo experiments with a wide variety of systems. If
some network events differed from others regarding the local early
warnings detected via state-space reconstructions, it can imply
potentially distinct properties of underlying dynamical systems.

Methods
Cell Culturing, Recording, and Causal Network Analysis. All experimental
protocol was approved by the Committee on the Ethics of Animal Experi-
ments at the Research Center for Advanced Science and Technology, the
University of Tokyo (Permit number: RAC130106). The cell culturing, re-
cording, stimulation, and burst detection were based on the protocols
reported previously (26, 27). The causal networks in the nonbursting period
were estimated using the CCM (31). The details of protocols are described in
SI Methods.

Burst Predictability Measured by Event-Targeted CCM. The preset method
borrows the technique used in CCM to quantify an early warning of a specific
global event, rather than the average interactions among the variables
throughout long observations. The method extends/integrates the original
CCM and the related methods by (i) designing the analytic protocol to assess
the predictability of a specific event (in our case, the spontaneous synchro-
nous burst), (ii) relating the global state to local components while the
original protocol only quantified the relationships between local variables,
and (iii) quantifying on the predictability of temporally distant global state
based on local variable dynamics. This is done by finding a mapping between
the system’s global state bt and each neuron xt−Δt including temporal lag Δt,
instead of simultaneous prediction among individual neurons. For burst
detection, we set t as the time corresponding to the peak of global state
during a burst period t ∈ ft1, . . . , tng, where n is the number of burst trials in
the experiment. We first reconstruct the state-space trajectory for neuron x
and the normalized global state b in the (randomized) delay coordinates, xt

d =
(xt, xt-τ . . ., xt-(d-1)τ) and bt

d = (bt, bt-τ . . ., bt-(d-1)τ). It is mathematically shown that
both of these trajectories reproduce the topological structure (the proximity of
data points) of attractor dynamics that they participate, with which a (near-)
future state of each variable is accurately predicted from the current state of
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other variables, if the dynamics (approximately) follows deterministic mecha-
nisms (29–32). Practically, however, the accuracy of prediction is limited by
various factors including data size, process/observation noises, as well as the
uncertainty due to asymmetric causal interactions.

The forecast for the global state b̂t based on a single neuron x with time
lag Δt is given by

b̂t

�
xd
t−Δt

�
=

X
t′s. t. xd

t′−Δt∈Bðxd
t−ΔtÞ

w
���xd

t′−Δt − xd
t−Δt

���bt′,

with the k-nearest-neighbor set Bðxd
t−ΔtÞ of xd

t−Δt, in the same manner as in
CCM. In the data analysis we used k = 4 and the same weight function,

w
���xd

t′−Δt − xd
t−Δt

���=
exp

�
−
��xd

t′−Δt − xd
t−Δt

���

Σt′s.t.xd
t′−Δt∈Bðxd

t−ΔtÞ exp
�
−
��xd

t′−Δt − xd
t−Δt

���.

The success rate in burst detection was defined by the ratio between the
number of burst trials such that b̂t > θx, where θx is the criterion for detecting
an upcoming burst based on neuron x’s activity sequence. In the present
study, we defined θx by the 95th percentile in the null-hypothesis distribu-
tion Pðb̂tNullðxd

tNull−ΔtÞÞ, where tNull is randomly selected time outside the
bursting period. Note that this detection criterion is different from the

threshold used for defining the burst period (for details of burst period
definition, see SI Methods). The burst predictability in each cell was quan-
tified by the rate of trials in which the upcoming bursts were successfully
predicted, where the success rate was summarized as an average over range
of time span −200 ms < Δt < −50 ms.

Similarly, the forecast based on the history of the global state itself is given
by the same protocol except for using b instead of x:

b̂t

�
bd
t−Δt

�
=

X

t′s. t.bd
t′−Δt∈Bðbd

t−ΔtÞ
w
����bd

t′−Δt −bd
t−Δt

���
�
bt′.

This quantifies the self-predictability of burst based on the global state itself,
through the success rate computed based on the corresponding threshold θb,
the 95th percentile of null-hypothesis distribution Pðb̂tNullðbd

tNull−ΔtÞÞ.
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SI Methods
Cell Culturing. All experimental protocol was approved by the
Committee on the Ethics of Animal Experiments at the Research
Center for Advanced Science and Technology, the University of
Tokyo (Permit number: RAC130106).
A protocol for cell culturing had been reported previously (26).

Briefly, E18 Wistar rat cortices were dissociated using trypsin and
mechanical trituration. Next, 20–40 k/μL neurons and glia were
seeded over an area of ∼12 mm2 on top of the CMOS chip. Layers of
poly (ethyleneimine) followed by laminin were used to adhere cells.
Plating media consisted of Neurobasal-B27 supplemented with 10%
horse serum and 0.5 mM GlutaMAX during the first 24 h. Growth
media consisted of DMEM supplemented with 10% horse serum,
0.5 mM GlutaMAX, and 1 mM sodium pyruvate. Experiments were
conducted inside an incubator to control of environmental conditions
(36 °C and 5% CO2).

CMOS-Based Recording and Stimulation of Network Activity. Cul-
tured neuron activities were simultaneously recorded with high-
density MEA as described before (26, 27). Cortical networks were
grown over 11,011-electrode CMOS-based MEAs (52, 53), which
provide enough spatial and temporal resolution to detect action
potentials from any neuron lying on the array: 1.8 × 2.0-mm2 area
containing 8.2 × 5.8-μm2 electrodes with 17.8-μm pitch, sampled
at 20 kHz. Subsets of 126 electrodes can be read out (and
stimulated) at one time, and electrode selection can be recon-
figured within a few milliseconds. To identify the locations of
neurons growing over the array, a sequence of about 100 re-
cording configurations were scanned across the whole array
while recording spontaneous activity. Locations of active somata
were identified because action potentials could usually be de-
tected from multiple nearby electrodes. Electrode selection was
then reconfigured such that a single electrode was assigned to
each identified soma, and spontaneous activities were measured
simultaneously from all of these cells. The putative neuron types
(excitatory or inhibitory) were estimated based on spike shapes
(Fig. S3). We could recode from 93, 47, 98, 92, and 53 neurons in
Chip 1437, 1440, 1444, 2427, and 2440, respectively.
Microstimulation-elicited network activities were then in-

vestigated to characterize a pairwise synaptic strength between
neurons. An adequate stimulating electrode was explored such
that a single target neuron was directly activated through axonal
stimulation and that the directly evoked spikes were exclusively
measured from the target cell. The directly evoked spikes could be
easily distinguished from postsynaptic activations because they
were very reliable (i.e., 100 spikes elicited out of 100 stimulation
trials) and exhibited a small temporal jitter (Fig. S4). The micro-
stimulation was a single, positive–negative, biphasic pulse with a
charge-balanced amplitude of ±300–900 mV and a duration of
200 μs/phase, and was delivered 100 times every 3 s.

Burst Detection. Burst in spontaneous activity was detected
modifying a protocol that was previously established by the au-
thors’ group (27). The previous study proposes to determine the
threshold for burst detection based on the distribution of ISI of
consecutive spikes (27). In the bursting neurons, the ISI distri-
bution typically has a bimodal structure whose valley can be used
as an objective criterion for burst detection. In this study, we first
computed sequences of population firing rate that were nor-
malized such that it ranges from 0 to 1. We defined this as the
sequence of global state bt, where t is the time. This was to use a
common burst-detection threshold across different preparations

of neuron cultures, which generally vary in terms of the absolute
firing rate. We used 5-ms bin for the firing rate computation. We
next derived the distributions of inverse firing rate over the bins.
This yielded an ISI distributions for each preparation, in which we
confirmed that all of them had bimodal shapes (Fig. 1D, Inset). For
each preparation, we selected the smallest ISI providing the valley
of distribution as the burst-detection threshold. The burst periods
were determined by the at least three consecutive sequences of bins
that have average ISIs under this threshold, identifying 26 bursts on
average for each preparation. We defined the peak burst timing by
selecting the center of the bin having the smallest average ISI (i.e.,
the largest global state) within each burst period.

Estimation of Synaptic Connectivity from Electrical Stimulation.
Synaptic connectivity was estimated based on the evoked re-
sponses during electrical stimulation experiment. To reliably
stimulate a single neuron, we searched a stimulation site around a
target neuron in each MEA that could elicit an action potential
exclusively at the target neuron. After the careful selection of
stimulation sites, we could evoke the action potentials at almost
100% probability for each single stimulation, with very little jitters
in the timings of action potentials in the stimulated neurons. We
first aligned the spike raster to the timings of stimulation. We next
computed the sequence of firing rate xi,t in a way described above.
The firing rates before the stimulation (−500 ms < t < −100 ms)
were used to produce the reference probability distribution of
each neuron’s firing rate, P(xi). Next, we computed the proba-
bility, P(xi > xi,t), for each time bin centered at t in a short
poststimulation period (2.5 ms < t < 15 ms); the responses
during 0 ms < t < 2.5 ms were omitted to eliminate the artifacts
of electrical stimulation. We defined the smallest time t that
satisfies P(xi > xi,t) < 0.01 in the poststimulation period as the
latency of neuron i. The neurons that had at least one time bin
satisfying this condition were defined as “downstream” cells of
the stimulated neuron; the neurons that did not have any such
time bin were defined as “non-downstream” cells.
According to the evoked response latencies, we identified the

short- (<10 ms) and long-latency (≥10 ms) downstream cells for
each stimulated neuron. The multisynaptic downstream cells for
a stimulated neuron comprised relatively small fraction n (17%
on average) of the entire population. This indicates that they are
subsets of neurons receiving effectively strong input from the
stimulated cell via relatively a small number of path length, al-
though the interaction with longer path length, which was
not detected here, could include the larger fraction of the cell
population.

Causal Network Analysis. Pairwise causal interaction among neu-
rons was estimated based on a variant of CCM. CCM was de-
veloped by Sugihara et al. (31) as an extension of nonlinear
forecasting method of time sequence based on nearest-neighbor
models (20, 54). The method is capable of detecting relatively
weak causal interactions in deterministic dynamical systems
(which can include some stochastic components) if the system and
observations are deterministic, the embedding dimension is
sufficiently large, and data size is sufficiently large for the given
embedding dimension. A variant of CCM that can be used for
systems in which the variables have heterogeneous time scales
(such as in neural system) was developed by the authors (32).
Suppose that we want to know the interaction from neuron

x to another neuron y. We first reconstruct the state-space
trajectories of each neuron x in the delay coordinates,
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xdmax
t = ðxt, xt−τ, . . . , xt−ðdmax−1ÞτÞ, where dmax represents the max-
imum number of dimensions (number of delay coordinates) to
be considered, t is the time point, and τ is the unit delay length.
We used τ = 5 ms dmax = 8 in this study. In the embedding-based
analyses, we convolved the firing-rate sequence of each neuron
with a Gaussian kernel that has half-width-of-half-height of
25 ms, and normalized such that each neuron trace ranges from
0 to 1. To avoid a known vulnerability of the state-space re-
construction to the time-scale heterogeneity (55), we projected
delay vector xdmax

t to a randomized coordinate space by multi-
plying a square random matrix, R, from the left, to obtain a
transformed vector: xdmax

t =R  xdmax
t . A d-dimensional delay vec-

tor xdt is constructed by selecting the first dð≤dmaxÞ components
of xdmax

t . The causal interaction form neuron x to another neuron

y is quantified based on the correlation coefficient, ρyt ,̂yðxdt Þ, be-
tween the true (yt) and forecast (ŷtðxdt Þ) signals, where

ŷt
�
xdt
�
=

X
t′s. t. xdt′∈Bðxdt Þ

w
���xdt′ − xdt j

�
yt′,

with the k-nearest-neighbor set Bðxdt Þ of xdt in the delay-coordinate
space. We set k=4, weight wðjxdt′ − xdt jÞ= ½expð−jxdt′ − xdt jÞ�=
Σt′s.t.xdt′∈Bðxdt Þ expð−jx

d
t′ − xdt jÞ, and jxdt′ − xdt j as the square distance

between xdt′ and xdt in the data analysis. Note that ρyt ,̂yðxdt Þ= 1
means perfect prediction. We selected the optimal dimension d =
d* so as to maximize the prediction performance, ρyt ,̂yðxdt Þ. Typical
value of d* was distributed from 2 to 4 in the current data.

Fig. S1. Population activity dynamics visualized with principal component analysis (PCA). The trajectories of population activity were plotted within the space
of top three principal components (PCs one to three), by applying PCA to the multineuron time series for each preparation. The results for three representative
preparations are shown.
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b

c

Fig. S2. Delay-embedding theorem (known as Takens’ theorem). Suppose that we have the time series of three variables, ðxðtÞ, yðtÞ, zðtÞÞ, generated by some
differential equations: _xðtÞ= fðxðtÞ, yðtÞ, zðtÞÞ, _yðtÞ=gðxðtÞ, yðtÞ, zðtÞÞ, and _zðtÞ=hðxðtÞ, yðtÞ, zðtÞÞ. (A) The evolution of the global state ðxðtÞ, yðtÞ, zðtÞÞ is rep-
resented by a trajectory in the space of those three variables. (B) Consider observing the temporal sequence of a single variable, e.g., xðtÞ. (C) The attractor
topology in the original global-state space is fully recovered in a delay coordinate of the observed variable, ðxðtÞ, xðt − τÞ, xðt − τÞÞwith an arbitrary unit delay, τ.
Namely, we can construct a smooth one-to-one map from the reconstructed attractor to the original attractor.
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Fig. S3. Microstimulation-based estimation of synaptic connectivity in a pairwise manner. (A) Axonal stimulation on an arbitrary neuron elicited bidirectional
action potential propagation. (B) Raw data of neural responses at a putative presynaptic neuron and postsynaptic neuron. Data from 100 trials are super-
imposed. (C) Raster plot of B. Antidromic, direct action potentials exhibited precise temporal responses, while orthodromic, synaptic action potentials were
elicited stochastically with significant temporal jitters. (D) Poststimulus spike histograms of C.
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Fig. S4. Identification of excitatory and inhibitory neurons. (A) Representative neurons in immunostaining with MAP2 and GABA. Action potentials below the
insets were obtained at white rectangles, putatively from a neighboring neuron in a circle. The peak-to-peak time, Tpp, was defined as time duration from
negative peak to positive peak of action potential. (B) Histogram of Tpp. Excitatory neurons (green) had larger Tpp than inhibitory neurons (magenta).
K-means method to Tpp was used to separate excitatory and inhibitory neurons.
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