
RESEARCH ARTICLE NEUROSCIENCE
BIOPHYSICS AND COMPUTATIONAL BIOLOGY OPEN ACCESS

Chaotic neural dynamics facilitate probabilistic computations
through sampling
Yu Teradaa,b,c,1 ID and Taro Toyoizumia,d ID

Edited by Terrence Sejnowski, Salk Institute for Biological Studies, La Jolla, CA; received July 28, 2023; accepted February 13, 2024

Cortical neurons exhibit highly variable responses over trials and time. Theoretical
works posit that this variability arises potentially from chaotic network dynamics of
recurrently connected neurons. Here, we demonstrate that chaotic neural dynamics,
formed through synaptic learning, allow networks to perform sensory cue integration
in a sampling-based implementation. We show that the emergent chaotic dynamics
provide neural substrates for generating samples not only of a static variable but also of
a dynamical trajectory, where generic recurrent networks acquire these abilities with a
biologically plausible learning rule through trial and error. Furthermore, the networks
generalize their experience in the stimulus-evoked samples to the inference without
partial or all sensory information, which suggests a computational role of spontaneous
activity as a representation of the priors as well as a tractable biological computation
for marginal distributions. These findings suggest that chaotic neural dynamics may
serve for the brain function as a Bayesian generative model.

computational neuroscience | recurrent neural networks | chaos | Bayesian computation |
cue integration

Humans and other animals face environments inherently associated with uncertainty,
necessitating the handling and integration of uncertain information for survival. A wide
spectrum of experimental studies has shown that the brain can perform nearly optimal
Bayesian computation (1–6). While some computational models (2, 7) assume that
neurons encode statistics of the underlying probability distribution, others suggest that
neurons encode Monte Carlo samples drawn from the distributions (8–21). For the latter
models, variability in neural activity is an essential element for probabilistic information
representation.

Consistently, recent experiments have recorded a large number of neurons simultane-
ously and revealed that irregular patterns of neural activity (22, 23) underlie information
processing in the brain. Such variability is generated spontaneously even in the absence
of explicit changes in sensory input (24–26). At a macroscopic scale, functional MRI
observations reveal specific patterns of intrinsic variability during the resting state. These
patterns, known as default mode networks (27), exhibit structures that reflect experience
and knowledge (28). At a microscopic scale, neural avalanches, in which neurons exhibit
events with strong synchrony and burst-type activity with power-law distributions of
sizes and lifetimes, are observed during spontaneous neural activity (29). Thus, irregular
spontaneous neural activity ubiquitously emerges across various spatiotemporal scales.

The biological source of neural variability is currently under debate (30–32). Neural
variability has sometimes been modeled by different types of stochastic noise in neural
dynamics (33–35), such as input noises to neurons (14) or stochastic spiking due to spike-
threshold noise in point-process-type models (36). Another factor of neural variability
arises from vesicular transmission by synapses (37), which is modeled by vesicular release
probability. These works assume the existence of a random number generator separately
from the modeled neural circuits. In contrast to these stochastic models, our study focuses
on models that explain neural variability in deterministic systems (38–45). Strong and
heterogeneous synaptic connections with the overall balance between excitatory and
inhibitory drives can endow even deterministic neural networks with the ability to
generate high-dimensional variability by chaos. Some experimental observations support
this hypothesis (31). This line of research has also triggered theoretical works elucidating
the computational advantages of neural dynamics at the edge of chaos (46–49). Further,
chaotic network states are shown to be a suitable initial condition that enhances learning
efficiency (50–54). However, these neural networks do not typically exhibit chaos
after learning, and their chaoticity has not been utilized explicitly for computation
in trained networks. More recently, chaotic dynamics are shown to permit multiple time
scales even close to marginally stable systems, which is advantageous for enabling long
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short-term memory without finely tuning parameters (44, 55). In
this paper, we discriminate two types of neural variability arising
from the different mechanisms, noise-driven and chaos-driven
variability, and focus on the latter.

Previous Bayesian computation models of the brain (7–17)
assume the existence of noise sources, which add stochastic
variability. Hence, whether chaotic variability is compatible with
biological Bayesian computation is unclear, especially because
the chaotic property that expands the effect of perturbation in
time is apparently contradictory to accurate computation. In
addition, these stochastic models often rely on a parametric
family to describe target probability distributions, which requires
hand-crafted designs in advance. In biological setups, considering
generic network architecture at the early stage of learning would
be more plausible. While nonparametric methods to learn a target
probability distribution are popular in machine learning (56–59),
it is not trivial how the brain can implement these computations
in a biologically plausible manner.

Here, we consider a nonparametric model to generate samples
from the Bayesian posterior distribution. The sampling is
achieved by utilizing chaotic network dynamics of recurrently
connected deterministic neurons. During training, we use the
biologically plausible node perturbation learning rule (60–63),
which is represented as a “three-factor learning rule.” Three-
factor learning rules are promising candidates for enabling flexible
adaptation for biological neural networks in a broad range of tasks
(64–67) as they can be implemented with local computation,

namely, by a Hebbian learning rule modulated by a global signal
(68–70). We explore the efficiency of a three-factor learning rule.

We consider representative examples of Bayesian tasks to
demonstrate that chaotic neural dynamics serve as the substrate
for representing posterior probability distributions. Specifically,
we use paradigmatic cognitive tasks for integrating information
from multiple sources similar to human and animal tasks,
known as cue-integration tasks (71, 72). We demonstrate that,
after training using a local learning rule, chaotic recurrent
neural networks learn to sample hidden static states or dynamic
trajectories of a hidden variable in a near-optimal manner.
We discuss the implications of using chaos for probabilistic
computations in the brain.

Results
Neural Sampling through Chaotic Dynamics. We developed a
rate-based recurrent network model that uses their intrinsic
dynamics to draw samples of the hidden variable of interest from
an estimated Bayes posterior distribution. These neurons are
governed by discrete-time dynamics receiving inputs from their
recurrent synapses and sensory neurons (see below and Methods).
A simple cue-integration task is described in Fig. 1A. In this
task, recurrent networks infer the probability distribution of the
hidden variable � of interest. For example, � may describe the
angular position of an object. For simplicity, we assume that the
angular position can take one among n possible directions (a
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Fig. 1. (A) Schematics of the cue-integration task. The recurrent neural network receives inputs xA and xB as sensory inputs, whose firing patterns are
determined stochastically based on their tuning curves and a hidden variable � of interest. The network learns to infer the probability distribution of � given
these inputs and generates samples through the output activity. The network’s output histogram composes an estimate of the posterior probability. During the
learning period, the bias parameters as well as the internal and readout connections in red are modified. (B) The Bayes optimal posteriors in the cue-integration
task. The prior of � (the uniform distribution here) is shown with the yellow histogram on the Left. The conditional distributions of the two input vectors are
specified by their tuning curve properties. The tuning curves describe the probability that each input neuron is active given �; they are depicted using the
orange and green histograms in the middle for � = 3. The Bayes posterior distribution given these input patterns xA ,xB is specified by the Bayes theorem and
indicated by the red blank histogram on the Right.
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biologically plausible extension will be discussed in Discussion).
A recurrent neural network receives two kinds of input vectors
x� , which represent the firing patterns of two sets of sensory
neurons � = A, B. For example, the sets A and B may represent
ensembles of auditory and visual sensory neurons, respectively,
that encode the direction � of the object. The lengths of these
input vectors are also assumed n, and each element k takes
either the active or inactive state, that is, x�k ∈ {0, 1}. At the
beginning of each trial, the value of � is randomly drawn from a
uniform distribution unless stated otherwise (nonuniform cases
will be shown later), and the input elements are generated
independently according to the conditional probability p(x�k |�)
for an element k = 1, 2, . . . , n and a population �. This
conditional probability specifies the tuning curve of neurons,
characterizing the sensory neurons’ activation probability given
the angular position. It peaks at k = � and decreases (slowly
for � = A and rapidly for � = B) as k deviates from the
peak (an example is shown in Fig. 1B; see also Methods). Note
that the network receives the information of � only through
noisy firing patterns x� of the sensory neurons. Within each
trial of its length T = 200 time steps, the values of � and
x� are fixed in time. The discrete-time dynamics of the N
recurrently connected neurons at time t (t = 1, 2, . . . , T )
are described by h(t) = J� (h(t − 1)) +

∑
�=A,B K

�x� + c,
where h is a N -dimensional vector of recurrent neural network
activity, J is a N × N matrix of recurrent synaptic weights, K�
(� = A, B) are the N × n synaptic weight matrices from input
�, c is a N -dimensional vector of baseline input parameters,
and �(·) = tanh(·) is an activation function (Methods). The
entries of J are initially drawn identically and independently
from the Gaussian distribution with zero mean and SD g/

√
N ,

parameterized by the gain parameter g. Note that both J and c
change during learning. The entries of K� are drawn from the
standard normal distribution, and they are fixed during the entire
simulation. Finally, an n-dimensional vector y(t) represents the
binary (0 or 1) activity of output neurons at time t. These neurons
receive inputs z(t) = W�(h(t)) + b, where W denotes n× N
matrix of readout weights and b is an n-dimensional vector of
bias parameters, and only the output neuron that receives the
maximum input is active while the remaining are inactive, which
could be implemented by the winner-take-all (WTA) mechanism
(73); the active output neuron at time t represents a sample
of the hidden variable, namely, y�̂(t) = 1 and y 6=�̂(t) = 0
with �̂(t) ≡ argmaxkzk(t) (k = 1, 2, . . . , n). Our goal is to
train the network so that the network-generated histogram of �̂
approximates well the Bayesian posterior p(�|xA, xB) given the
current sensory input pattern.

We adopted a local learning rule based on the node per-
turbation method (60–63) to update synaptic weights and bias
parameters, which is considered more biologically plausible than
machine learning algorithms that require, for example, error
backpropagation (see the details in Methods). The error function
for learning is defined as the square of the Hellinger distance
(74), which measures the distance between the histograms of
active output neurons within the time window and the Bayesian
posterior. We assumed that the Hellinger distance is evaluated
by an external network and transferred to the modeled network
during learning. According to the node perturbation learning
scheme, we updated adjustable parameters J , W , c and b, but set
the baseline parameter c as zero through simulations for the static
tasks. For example, the update of synapse Jij is described by the
product of the global signal and a Hebbian term that correlates

presynaptic activities and postsynaptic perturbations Eq. 7. The
stochastic perturbations for computing the gradient are turned
off after the training, and therefore the network dynamics become
completely deterministic.

While a random network does not exhibit adequate sampling
before training, the trained network utilizes its irregular dynamics
to represent the posterior distribution (Fig. 2). The neural
variability in the recurrent network plays a crucial role in
expressing the uncertainty of the hidden variable because the goal
here is not only to estimate the most likely value of � but also to
generate samples from the posterior distribution. Moreover, the
trained network succeeded in integrating uncertain information
from two different sources and produced a good approximated
posterior probability.

In Fig. 3A, the time course of the error (the squared Hellinger
distance between the generated output histogram and the
Bayesian posterior) is shown for 10 randomly initialized networks
during learning. The task performance depends on which sensory
inputs are available. The performance using input B alone is better
compared to that using input A alone. This is because the neurons
in B have a narrower tuning curve, and the input B is hence more
informative than input A. The best performance is achieved
when both inputs are available, highlighting the ability of the
network to integrate multiple cues. The resulting distributions
p(�|xA, xB) represented by the trained network for different
patterns of sensory inputs, closely approximate the Bayesian
posteriors over a variety of input vectors (Fig. 3B). As expected,
the output distribution approaches the Bayesian posterior as the
sampling duration T increases (SI Appendix, Fig. S1). Further,
the adaptation of the synaptic connectivity J within the recurrent
network reduces significantly the sensitivity of learning outcomes
to the initial network configuration, compared to the so-called
“reservoir scheme” that adjusts only the readout parameters W
and b (see, initialization at the edge of chaos in SI Appendix,
Fig. S2 and at the chaotic regime in SI Appendix, Fig. S3).

Randomly connected recurrent neural networks with strong
synaptic interactions can exhibit chaotic dynamics. To investigate
the nature of network dynamics and how they are related to
task performance, we monitored the largest Lyapunov exponent
as a measure of chaoticity and compared it with the error
function during the learning period (Fig. 3C ). The network
is initially placed slightly below the edge of chaos with the
synaptic gain parameter g = 1.05. Note that the dynamics are
nonchaotic at g = 1.05 because the sensory inputs suppress chaos
in random neural networks as demonstrated previously (e.g.,
ref. 75). The result shows that, as task performance improves
through learning, the largest Lyapunov exponent increases from
the negative to the positive side. It indicates that chaos emerges
through learning while the network develops the capacity for
probabilistic computation. This result is in contrast to the
findings of previous works that trained nonchaotic dynamics
(50–52, 54), and it highlights the utility of chaotic dynamics
in probabilistic computation. The enhancement of chaoticity by
learning was reported in associative memory (76), but our study
directly links the computational ability of networks to chaos
through the lens of representation of probabilistic distributions.
While the training develops the chaotic dynamics from the edge
of chaos, we found that starting from generic chaos could perform
better in our setup, as shown in SI Appendix, Fig. S4A.

Chaotic neural dynamics render the networks to be highly
sensitive to a perturbation, which might appear incompatible
with accurate computation. Indeed, when the initial activity of
neurons h(0) is slightly perturbed in the trained network, its
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Fig. 2. An example of neural sampling before (with random initial weights) and after training. (A) The input patterns of the two sensory neuron populations.
During the first-half period, sensory inputs are absent (all the sensory neurons are inactive). During the second-half period, the networks receive specific
patterns of sensory inputs according to a hidden object direction. (B and C) (Top) The activities of a randomly selected subset of neurons, (Middle) the activities
of output neurons (blue dots indicate active neurons), and (Bottom) the resulting histograms of active output neurons (colored bars). The generated distributions
for the second half with blue-filled boxes are compared with the Bayesian posterior distributions, denoted by the red blank boxes.

subsequent trajectory changes drastically (Fig. 3D). Nonetheless,
the output distributions in response to various sensory inputs
are robust to the perturbation (see also SI Appendix, Fig. S5A).
Hence, the high sensitivity to the initial condition does not
compromise the reliability of the probabilistic computation.
Furthermore, we demonstrate robust performance against per-
turbations in recurrent synaptic weights J (SI Appendix, Fig.
S5B). We believe that this is a possible reason why the brain
can perform reliable computation using highly variable neural
dynamics.

Computational Role of Spontaneous and Evoked Neural
Activities. As shown above, the recurrent networks draw output
samples from distinct sets during spontaneous and evoked
activities. The spontaneous activity of neurons may reflect the
prior distribution over possible sensory inputs (5, 9). Here, we use
our model to test the hypothesis that the learning process through
stimulus-evoked samples can construct priors. In Fig. 2C, we
assumed the uniform prior distribution over � and obtained a near

uniform output distribution during the spontaneous activity.
However, the output distribution during spontaneous activity
looked similar to the uniform prior even before the learning (Fig.
2B). Moreover, the learning process explicitly supervised the prior
distribution by giving the networks training samples, including
input sets without sensory stimulus. To address the problem
of whether the network learns to code the prior distribution
p(�) during spontaneous activity from the learning only with
stimulus-evoked samples, we trained networks using two different
prior distributions (Fig. 4 A and B). The results show that the
histogram of output during spontaneous activity matches the
prior distribution p(�) well. The learning curves for the errors
for stimulus-evoked and spontaneous patterns indicate that the
local learning sculpts chaotic dynamics not only for the posteriors
but also for the prior only relying on stimulus-evoked samples
(Fig. 4C ).

We showed above that the network output is distributed
approximately representing the prior distribution when both
sensory inputs are absent. Note that the prior distribution is
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D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 "
R

IK
A

G
A

K
U

 K
E

N
K

Y
U

SH
O

, L
IB

R
A

R
Y

" 
on

 A
pr

il 
22

, 2
02

4 
fr

om
 I

P 
ad

dr
es

s 
13

4.
16

0.
17

3.
54

.

https://www.pnas.org/lookup/doi/10.1073/pnas.2312992121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2312992121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2312992121#supplementary-materials


D

A B

C

true
generated

er
ro

r

error

la
rg

es
t L

ya
pu

no
v 

ex
po

ne
nt

learning time

er
ro

r

trained with A input only
trained with B input only
trained with both inputs

original

 learning time

perturbed true

1 
2 

3 
4 

5

1 2 3 4 50

1
0

1

0

1

0

1
0

1

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 2 3 4 50

1

1 2 3 4 5 1 2 3 4 5

ne
ur

al
 a

ct
iv

ity
ou

tp
ut

time

2 4 6 8 10
×104

0

0.1

0.2

-20
20

-20
20

-20
20

0

0.4

-0.4

-0.8

-1.2

100 200

0 0.5

0

0.5

6×105

0.1 0.2 0.3 0.4 0.6 0.7

in
pu

t

1 
2 

3 
4 

5

pattern 1 pattern 2 pattern 3

pattern 1
no input pattern 2

pattern 3

Fig. 3. Performance and chaoticity of the recurrent neural networks in the cue-integration task. (A) Learning curves of the networks that receive inputs from
either of the populations (A or B) and from both during training, where the errors are evaluated for the posteriors given A and B. (B) Probability distributions
provided by the trained network (the blue filled boxes) and true posteriors corresponding to the sensory inputs (red blank boxes) for multiple examples of
input patterns. Input patterns A and B are shown above the distributions. (C) Largest Lyapunov exponent versus error value for networks during training for
different patterns of inputs. The inset shows the errors versus learning time. The markers are colored from blue to red depending on the elapsed time. (D) Top:
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written by averaging the posterior distribution with respect to
the two unobserved sensory inputs, p(�) = ExA ,xB [p(�|xA, xB)],
where ExA ,xB represents the expectation over xA and xB. A natural
extension of the above result is the case, where only one of the
sensory inputs is observed. For example, if only xA is observed,
the output distribution might follow the conditional average
of the posterior of the form p(�|xA) = ExB|xA [p(�|xA, xB)],
where ExB|xA is the conditional average over xB given xA. Our
simulations demonstrate that this property holds with high
accuracy. Fig. 5 shows the result in two cases where the trained
networks receive inputs either from population A or B. We note
that, as in Fig. 4, the networks were trained using only stimulus-
evoked samples. Namely, the network receives nonzero inputs
from at least one active neuron in both sensory populations.

This situation can correspond to a condition in which an
animal receives partial information (for example, only auditory
or visual inputs) and generalizes its experience to this novel
situation with more uncertainty. Conditionally averaging the
posterior distribution in a direct manner can be computationally
expensive because it involves the sum over potential unobserved
input candidates, whose complexity grows exponentially with
the number of unobserved variables. Moreover, the computation
must be revised when the observed input changes. Through
chaotic sampling, the networks succeed in approximating the
conditionally averaged posteriors circumventing the evaluation
of the sum over unobserved input candidates. This imple-
mentation constitutes a biologically suitable strategy to im-
plement probabilistic computation with limited computational
resources.
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Dynamical Probabilistic Inference. Next, we illustrate another
example of probabilistic tasks that recurrent neural networks
can implement using their chaotic dynamics. In the previous

task, the networks exhibit their ability to integrate multimodal
information to infer underlying static probability distributions.
We hypothesize that the recurrent network model can also
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learn to generate samples of dynamic trajectories in a sensory-
input-dependent manner. The task we consider here is one in
which the network discriminates types of inputs and, depending
on them, switches the transition probabilities of the outputs
(schematics is shown in Fig. 6A). It requires the network to
generate samples depending on its current internal state. To
implement this computation, recurrent neural networks are
required to learn temporal statistics. Here, we consider a simple
setup, in which inputs A and B are both single-bit binary inputs,
and we assume n = 3 states of � and the corresponding output.
The target transition probability matrices depend on sensory
inputs; they have a uniform structure without sensory inputs
and heterogeneous structures with sensory inputs (Methods). The
same training scheme for the internal and readout parameters is

applied again. We note that a network requires both sources of
information as sensory inputs for accurate inference and, hence,
this task is also a cue-integration task.

The trained recurrent networks integrate the information of
the two inputs and utilize their chaotic variability to generate
a dynamic output trajectory. Their learning curves are shown
in Fig. 6B. The generated output trajectories approximately
follow the target transition probabilities for both types of input
patterns (Fig. 6C ), while the time-averaged distributions of the
outputs themselves are uninformative and almost uniform. Thus,
the output dynamics driven by chaos can accurately reproduce
the sequence of the target variable that follows the input-
dependent stochastic dynamics. Hence, these networks perform
a general form of dynamic sampling tasks based on Bayesian cue
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integration. While recurrent networks with external stochastic
noise (for example, ref. 14) could achieve this computation,
the stochastic implementation requires different computational
components separately; the probability representation through
stochastic inputs and state-dependency of computations via
recurrent connections. By contrast, chaotic dynamics unify the
two properties through recurrent network interactions in our
model.

Discussion. We demonstrated that the recurrent neural networks
trained using the local learning rule can integrate multimodal sen-
sory inputs, compose near Bayes optimal posterior distributions,
and draw samples from them by utilizing internally generated
chaotic variability. Chaotic dynamics is apparently incompatible
with reliable computation because of the butterfly effect that
exponentially spreads dynamical trajectories initially started from
nearby network states. Therefore, previous works have mostly
avoided using a directly chaotic phase in the final state. However,
as shown in Fig. 3B and SI Appendix, Fig. S5, this work offers a
basis for realizing reliable probabilistic computation using chaotic
neural dynamics. We speculate that this mechanism may underlie
flexible information processing in the brain accompanying large
variability, with the fact that experimental supports for chaotic
neural dynamics are already reported (31). While networks with
fixed-point dynamics can solve tasks not needing sampling (SI
Appendix, Fig. S7), neural variability is widely observed in the
brain, and tasks that require sampling, similar to ones considered
in the main text, are relevant to animal behavior (77). Further
evidence during Bayesian computation may become available in
the future using advanced experimental techniques such as wide-
field imaging (78, 79), dense electrophysiology recordings (80),
and neural control by optogenetics (81); our results (Fig. 3D
and SI Appendix, Fig. S5) imply that injection of a perturbation
to some neurons can drastically change the network dynamics
and resulting time-course of outputs due to chaotic network
dynamics, but without significantly altering the inferred posterior
distribution in the form of sampling histogram from which
behaviors are generated. This prediction could be tested by
confirming unaltered task performance despite the sensitivity
of network states to perturbations during a statistical task. In
contrast, such sensitivity would not be observed according to the
noise-based sampling approach (9–12, 14, 82). Specifically, in
order to test whether the distinction matters, we could compare
two systems with deterministic and stochastic noises that generate
apparently similar dynamics, by adjusting input statistics in
the stochastic system (83). Their time correlations could be
identical, but stochastic systems do not show a high sensitivity
to a perturbation. This strategy may be useful to confront our
results with experimental data.

We employed the node perturbation learning rule in the main
text to train the recurrent networks in a trial-and-error way, where
the network receives the scalar value of error information. To
study the effect of learning rules, we also used random feedback
local learning (67) as another biologically plausible learning rule
as well as backpropagation (SI Appendix, Fig. S6). These learning
rules require explicitly calculating the gradients. In this sense, we
assume that the node perturbation learning rule may be simpler
to implement in the brain. In addition, unlike the above gradient-
based learning rules, the results suggest that the node perturbation
learning rule can more robustly develop chaos even starting from a
nonchaotic regime, consistently with a previous observation (63).
While the gradient-based learning rules can cause the gradient
vanishing problem to perform sampling at the network’s fixed

point, the node perturbation can explore a wider search range
with appropriate perturbation amplitude.

One limitation of this work is that it does not address how
the brain compares two probability distributions to compute the
error values. The computation of error values could be learned
through an unsupervised learning framework such as generative
adversarial learning (58) by a biologically plausible learning rule
like node perturbation or random feedback local learning. Future
computational and experimental research is needed to study the
biological mechanism underlying the evaluation of probabilistic
errors.

We note that the use of chaotic dynamics in recurrent neural
networks as a source of random-number generators has been
investigated (84, 85). One work (84) proposes an engineering
method, using a hand-crafted network architecture, to solve
a static problem without addressing Bayesian cue integration.
Another work (85) uses chaotic input generated in a separate
network instead of assuming external stochastic input to solve
static tasks. Hence, similar to standard generative models, these
works assumed networks that learn to process input variability
as opposed to generate variability, which seems a less flexible
architecture because of separated networks for the representation
and random-number generation. Neither of the above works
addresses how biological systems could implement such compu-
tations, how networks with a generic initial structure can learn
the task, or how spontaneous variability is related to evoked
variability in the presence of an input. In contrast, we have shown
not only that chaotic neural dynamics are useful for stochastic
sampling in both static and dynamic tasks but also that generic
networks can learn Bayesian computation and sampling through
the biologically plausible synaptic plasticity rules. Importantly, as
shown in Fig. 4, our model suggests that the ensemble of evoked
activity during training shapes spontaneous activity, even when
the training data do not include the corresponding samples for
spontaneous activity. Further, the proposed networks not only
express the prior distribution but also approximate conditionally
averaged posteriors, such as p(�|xA) = ExB|xAp(�|xA, xB),
as its generalization. Our results in Fig. 5 showed that the
network could represent this distribution for a variety of
observed input xA, simply by omitting input xB without
needing to explicitly evaluate the computationally intense con-
ditional average. This is an attractive property for brain-inspired
computing.

In this work, we suggested the role of chaotic variability
in sampling-based computations. However, it might also serve
other roles. For example, during training, we applied the node
perturbation algorithm that randomly perturbs neural activity
and correlates the perturbation with future rewards. While
the use of white-noise perturbations is suitable for uniformly
exploring the activity space without assumptions, structured
chaotic variability, shaped by experience, may be suitable for
targeted exploration in the activity space (86). The use of
internally generated chaotic variability to guide the exploration
of node perturbation learning and comparison of its performance
with the one using white noise is a potential direction for future
research. Such structured neural variability might control the
trade-off between exploration and exploitation in learning.

Notably, while we considered deterministic neural networks
without noise for simplicity, chaotic dynamics are well defined in
the presence of noise (75, 87). We do not rule out a contribution
from noise in neural variability; however, we simply focused on
the network mechanism that deterministically generates irregular
neural dynamics via strong synapses, which could enhance
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stochastic seeds of variability if any. We believe that future studies
will identify their separable contributions and potential synergy.
For example, additive noise can control the chaotic transition to
maintain high memory capacity (87) and quenched noise can also
modulate high-performance regime introducing multistability
that includes chaotic dynamics (88).

Several extensions of the proposed model are possible. First,
recurrent neural network models have offered interpretable and
parsimonious accounts to bridge different types of cognitive
behaviors and neural circuit activity (6, 89–92). Therefore, the
Bayesian mechanism proposed with the simple and abstract
recurrent neural network model could be tailored to explain more
specific behaviors, such as motor control, psychophysics effects,
and decision-making (35, 72). Second, we focused on discrete-
time dynamics of neural networks for simplicity; however,
extensions toward more biologically plausible models are also
possible. For example, continuous-time models share many
dynamical properties with our model and may become essential if
more precise temporal patterns are needed. Moreover, although
we set the time-scale parameter as � = 1, this assumption can
be easily extended. Such studies could help for a comparison
of time scale in recurrent neural networks with experimental
observations. Third, we have assumed that neurons communicate
with each other through their firing rates, but communication
through spiking activity may play an important role. Importantly,
the node perturbation learning rule that we used is directly
applicable in spiking neural networks as well (62). It would be
interesting to explore whether this difference may contribute to
biological correspondence as well as energy and computational
efficiency. Fourth, humans and other animals exhibit behavioral
variability in their environments. Deterministic models explain
the hierarchy of multiple timescales and the interplay among
them (93, 94). Chaotic dynamics may help bridge neural and
behavioral variability in the context of probabilistic tasks. Our
results suggest that macroscopic variability in animal behaviors
may partly arise from probabilistic sampling utilizing microscopic
neural activity. Furthermore, although we only considered five
angular positions, higher resolution than 2�/5 is realized in the
head direction systems in animals (for example ref. 95), and
it does not seem appropriate to scale our computation with a
larger readout network using the argmax function. One possible
way to address this issue is to increase the number of output
neurons but let them interact through fixed lateral couplings to
achieve a biological tuning curve (96, 97). The estimated position
may be read out as the center of the activity bump. Finally,
we assumed that the tasks are ideally simplified and highly low-
dimensional, which does not essentially require high-dimensional
complex neural dynamics. To perform more complex tasks,
the networks would need higher dimensionality, whose entropy
exceeds that of target distributions. However, because previous
work supports the low-dimensionality in neural dynamics (98),
animals might sometimes approximate a complex distribution
using low-dimensional neural dynamics for biological constraints
or fast learning. In generic networks, high-dimensional chaotic
dynamics are associated with strong chaos (45), which may
sacrifice the performance as shown in SI Appendix, Figs. S4A
and S6 A and B.

Methods
Model. A recurrent neural network model, where the N neurons are recurrently
connected through the synaptic weights denoted as the matrix J, and the
membrane potential variable of a neuron i at time t is represented as hi(t),

was considered. The continuous version of the network models is defined for
infinitesimal Δ as

�
h(t + Δ)− h(t)

Δ
= −h(t) + J� (h(t)) +

∑
�=A,B

K�x�(t) + c, [1]

where� is the time-scaleparameter,ci represents the time-independentbaseline
of the activity of neuron i and x�i (t) represents the binary activation state of
a sensory neuron i of the input population �, and fixed input weights are
K� (Figs. 1A and 6A). The output of the network at time t is specified by
�̂(t) = argmax�z�(t) (� = 1, 2, . . . , n) with z(t) = W�(h(t)) + b, where
a row of W , W� is the readout weight for the output �, and b� is the readout
bias. The activity of the output neurons is thus given by y�̂(t) = 1 and
yk 6=�̂(t) = 0. For simplicity, we focus on the discrete-time dynamics of Eq. 1
by setting � = 1 and Δ = � and omitting the decay term as in the previous
works (48, 75, 99). Indeed, the discrete dynamics share several critical properties
with the continuous version (39, 48, 75, 87, 99). We will discuss an extension
to continuous-time cases in Discussion. Sensory input patterns x�i (t) are fixed
within one time window for inference for one posterior distribution, although
they can change when the inference is switched. We denote as x�i for simplicity.
In this paper, we omit the self-interactions, the effective decay terms as Jii = 0.

Learning Rule. We adopted a biologically plausible learning rule, the node
perturbation rule (62, 100), which requires only local computation and at the
same time approximately reproduces the outcome of the error backpropagation
learning. We assume noisy inputs during learning to induce perturbative
exploration of synaptic weights and eligibility traces (101). In this learning
rule, the networks exploit the global signals, which can be regarded as “the
third factors” (68, 69) and are linked to errors or rewards. Additionally we define
the error function as the square of the Hellinger distance between the true
posterior distributions and the empirical distributions generated by the network;
E = H2 =

∑
�(
√
p� −
√
q�)2/2, where p� is the Bayesian posterior and q�

is the generated histogram. The error was defined as a function of the empirical
distribution of network output, which we evaluate as a histogram over a fixed
time interval.

During the training period, we perturbed the systems by adding small
stochastic noises: the neural dynamics during training are described as

h(t) = J� (h(t − 1)) +
∑
�=A,B

K�x� + c + �(t), [2]

z(t) = W�(h(t)) + b + �(t), [3]

where �(t) and �(t) are independent noises.
As an example, we illustrate the learning of Jij in detail, while other cases

follow similarly. The error function can be expanded over the power of the input
trajectory as

E[�] ' E0 +
∑
s

∑
j

∂E[�]
∂�j(s)

�j(s), [4]

where E0 denotes the baseline error value without the perturbation input. By
averaging the product of �i(t) with this equation over the statistics of � with the
Dirac delta correlation, we see(

E[�]− E0
)
�i(t) ∝

∂E[�]
∂�i(t)

=
∂E[�]
∂hi(t)

[5]

holds. Using this relation, we obtain the expression for the gradient of the error
function over Jij:

∂E
∂Jij

=
∑
s

∂E
∂hi(s)

∂hi(s)
∂Jij

∝

∑
s

(
E[�]− E0

)
�i(s)�(hj(s− 1)). [6]
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We use the gradient descent method, and the resulting update equation for Jij
is written as

ΔJij = −�J
(
E� − E0

)∑
s

�i(s)�
(
hj(s− 1)

)
, [7]

where E� and E0 represent the error values under the existence and absence of
the perturbation, respectively. Here, we take the sum over time-step s during a
batch period. Similarly, for the other adaptive parameters

Δci = −�h
(
E� − E0

)∑
s

�i(s), [8]

ΔWij = −�W
(
E� − E0

)∑
s

�i(s)�
(
hj(s)

)
, [9]

Δbi = −�b
(
E� − E0

)∑
s

�i(s). [10]

Here, � denotes the learning rate for each factor. We adopted the Adam method
(102) to determine the learning rate, in which the hyperparameters are fixed as
usually:�Adam = 0.001,�Adam

1 = 0.9,�Adam
2 = 0.999, and�Adam = 10−8

for all parameters J, c, W , and b, while other schemes could also be used (52).
Stochastic noises �i(t) and �i(t) are drawn from the uniform distributions.We
draw them from the supports [−1, 1] for g = 8.0 and [−2, 2] for g = 1.05 ,
respectively, if not stated otherwise. The effect of the noise amplitude is studied
in SI Appendix, Fig. S4B. After the training period, the stochastic noises were no
longer applied.

Static Cue-Integration Task. To study the capability of the chaotic neural
networks in probabilistic computation, we considered a cue-integration task
where the networks infer the posterior distributions from A and B inputs, as shown
in Figs. 1–3. The networks received inputs from sensory neurons in populations
A and B, whose binary activities (0 or 1) are determined stochastically according
to the tuning curves described below.

We considered two different sensory populations A and B, each consisting
of n = 5 neurons, and the recurrent neural network consisting of N = 100
neurons. We set different tuning curves for A and B (Fig. 1B): a neuron i in
population A becomes active with the probability 0.7 for � = i, 0.5 for � = i±
1 (mod 5), and 0.3 for� = i±2 (mod 5), respectively. For example, given the
orientation value � = 1, we have the conditional probability of a neuron i firing
p(xa

1 = 1|� = 1) = 0.7, p(xa
2 = 1|� = 1) = p(xa

5 = 1|� = 1) = 0.5,
p(xa

3 = 1|� = 1) = p(xa
4 = 1|� = 1) = 0.3. The tuning curve of a neuron

i in B is specified with the probability 0.8 for � = i, 0.5 for � = i± 1 (mod 5),
and 0.2 for � = i± 2 (mod 5), respectively. In Figs. 4 and 5, we removed the
samples where all neurons in A or B are inactive; if xA/B = 0 is produced, we
draw the xA/B again. As a result, at least one neuron in A and B would be active
and the networks thus receive nonzero stimuli from both populations.

We allocated a transient period of 10 time steps and a generative period of
190 time steps for each input.

In this task, the aim of a network is to generate probabilistic distributions
by sampling the output y, whose distribution should be as close as possible to
the Bayesian posterior of the hidden variable �. After presenting a batch of 50
periods, the error values were calculated, and their means were used to update
the weights and biases.

The initial values of internal connectivity Jij were drawn from a Gaussian

distribution with SD g/
√
N, where we set g = 8.0 in Figs. 2, 3A, and 4 and

SI Appendix, Figs. S2 D–F and S3 and g = 1.05 in the other cases unless
it is stated otherwise. The readout weights Wij were initially drawn from a

Gaussian distribution with SD 1/
√
N. We assumed the zero readout biases

bi = 0 for all network neurons through this task. The input connections Kij from
sensory neurons to the recurrent networks were drawn from a standard normal
distribution (10 times larger deviations are used in SI Appendix, Fig. S3), and
their values were fixed in simulations.

Temporal Statistical Task. To study the capacity of the chaotic networks to
capture temporal relations by their dynamics, we considered a temporal task
in which the recurrent neural networks receive inputs from sensory neurons
and generate their outputs so that their sequence follows target transient
probabilities.

We considered two groups of sensory neurons A and B. The recurrent
neural networks have N = 100 neurons as seen in Fig. 6A. Both sensory
neurons take binary states and we trained network dynamics for three of their
firing patterns:

(
xA, xB

)
= (0, 0), (1, 0), (0, 1), as spontaneous, A-evoked,

B-evoked states, respectively. For each pattern, we set the target transition
probabilities that the network should learn, as represented with the red blank
boxes in Fig. 6C; the target transition probability matrices are denoted concretely
as (1/3, 1/3, 1/3; 1/3, 1/3, 1/3; 1/3, 1/3, 1/3) for (xA, xB) = (0, 0),
(0.25, 0.5, 0.25; 0.25, 0.25, 0.5; 0.5, 0.25, 0.25) for (xA, xB) = (1, 0), and
(0.3, 0.1, 0.6; 0.6, 0.3, 0.1; 0.1, 0.6, 0.3) for (xA, xB) = (0, 1), where the
entry of ith row and jth column denotes the conditional probabilityp(�(t+1) =
i|�(t) = j). We trained the network with a time window of 500 time steps for
each of the three input patterns.

The gain parameter of synaptic connectivity was set as g = 12.5, the initial
Kij was drawn from a standard Gaussian distribution, and initial Wij was a

Gaussian with a SD 1/
√
N. We initially set biases of neurons and readout

weights to zero and assumed a nonzero plastic baseline parameter c for neural
activity.

Data, Materials, and Software Availability. Codes reproducing the main
figures can be found at GitHub (https://github.com/yu-terada/chaos-sampling)
(103). All other data are included in the manuscript and/or SI Appendix.
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