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Recently much attention has been paid to the nonextensive canonical distributions: the α-
families. Such distributions have been found in many real-world systems such as fully developed
turbulence and financial markets. In this paper, a generalized mean-field method to approximate
the expectations of the α-families is proposed. We calculate the α′-projection of a probability dis-
tribution to find that the computational complexity to approximate the expectations is greatly
reduced with a proper choice of the projection-index α′. We apply this method to a simple
binary-state system and compare the results with direct numerical calculations.1
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1. Introduction

During the last decade, Generalized Statistical
Mechanics (GSM) has been intensively studied [Abe
& Okamoto, 2001]. Adding one parameter, Tsallis
[1988] proposed a generalized version of Shannon
entropy, Sq = −k[1 − ∑

x pq(x)]/(1 − q), where q
is the entropic index and p(x) is the microscopic
probability of a state x. As the limit of q → 1, the
ordinary Shannon entropy is derived. Maximization
of this entropy under an energy constraint yields
the GSM canonical distribution [Tsallis, 1988], i.e.

p(x) = (1/Z)[1 − (1 − q)βH(x)]1/(1−q). GSM
describes a large number of important real-world
phenomena with this single-parameter generaliza-
tion such as self-gravitating systems [Taruya &
Sakagami, 2002], long-range classical Hamiltonian
systems [Latora et al., 1998; Latora et al., 2001;
Latora & Tsallis, 2001], fully developed turbulence
[Beck, 2001, 2002], financial markets [Ghashghaie
et al., 1996], and one-dimensional nonlinear maps
[Baldovin & Rovledo, 2002] (see [Abe & Okamoto,
2001] for a summary). The more the importance of

1This paper is a modification of the contribution in the proceedings of Shanghai International Symposium on Nonlinear Science
and Applications 2003 (SNSA 2003).
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GSM is recognized, the greater the need for tools to
analyze the GSM canonical distribution. Because of
the correlations among the variables x of the GSM
canonical distribution, it is computationally hard
to elucidate statistical properties of a large-size sys-
tem. In this respect some methods, for example, the
mean-field method and the variational method have
been arranged for GSM [Plastino & Tsallis, 1993;
Lenzi et al., 1998; Mendes et al., 1999].

On the other hand, the mean-field method is
now not only of interest to physicists but also
used in the fields of information theory [Kabashima
& Saad, 1998] and machine learning [Peterson &
Anderson, 1987; Opper & Winther, 2000]. That
is why the mean-field method is intensively stud-
ied in the framework of the information geome-
try [Tanaka, 2000; Bhattacharyya & Keerthi, 2000].
Amari et al. proposed the α-projection of the
Boltzmann–Gibbs distribution as a generalization
of the mean-field method [Amari et al., 2001]. In this
paper, however, we apply this method to power-law
distributions that are known as α-families in the
field of information geometry [Amari & Nagaoka,
2000]. We show that the particular selection of a
projection enables us to approximate the expec-
tations of a distribution with less computational
complexity compared with the exhaustive exact
calculation.

The main purpose of this paper is to compute
the expectation η of an α-family:

p(x; θ)

=




1
Z(θ)

exp

(
Ñ∑

ν=1

θνfν(x)

)
, α = 1

1
Z(θ)

[
1 − α

2

Ñ∑
ν=0

θνfν(x)

]2/(1−α)

, α �= 1

(1)

where {fν}Ñ
ν=0 is a set of linear independent func-

tions of the state vector x = {x1, . . . , xN}, θ =
{θν}Ñ

ν=0 is a coordinate system of the α-family, and
Z(θ) is the normalization constant.

We assume f0 = 1, θ0 = 2/(1 − α), and
[((1 − α)/2)

∑Ñ
ν=0 θνfν(x)] > 0 for all x through-

out this paper for simplicity. The expectations of
p(x; θ) are given as

ην ≡ Ep[fν ] =
∑
x

fν(x)p(x; θ), (2)

for ν = 1, . . . , Ñ . When
∑Ñ

ν=1 θνfν(x) = −βH(x)
and (1 − α)/2 = (1 − q), p(x; θ) of Eq. (1) is the
GSM canonical distribution.

Due to the nonlinear terms of {fν} in Eq. (1)
for α �= −1, it is computationally hard to calculate
η for large N systems. It takes O(NkN ) of com-
putation for general α, where k is the number of
discrete states that xi can take. Therefore, we usu-
ally apply the mean-field method to approximate
η. In the following, we propose a generalization
of the mean-field method, that is the α-projection
[Amari & Nagaoka, 2000; Amari et al., 2001] of the
α-family.

2. The α-Projections of Power-Law
Distributions

Let x = {xi|xi ∈ {1, . . . , k}, i = 1, . . . , N} be a
state vector, S be the family of probability distri-
butions on x, and M be the family of factoriz-
able probability distributions on x. A probability
distribution on M is represented as p0(x;h) =∏N

i=1 p0i(xi;hi), where h = {hi}N
i=1 is a coordi-

nate system of M. In this section, we approximate
p(x; θ)(∈ S) of Eq. (1) by its α′-projection onto M.

We will show in the following that a proper
selection of the projection-index α′ can consider-
ably reduce the computation of the α′-projection
of p onto M [Toyoizumi & Aihara, 2003]. Then
we will approximate the expectation η by η0 ≡
{Ep0 [fi]}N

i=1. We will discuss the properties of the
α′-projection and explain that this method is a one-
parameter generalization of the naive mean-field
method.

Let us calculate the α′-divergence Dα′ between
p and p0 to find the α′-projection of p onto M. Since
it is given by arg minp0∈M Dα′(p||p0) (See Appendix
for properties of α′-projection.), the α′-divergence
between p and p0 is expressed as,

Dα′(p||p0) =
4

1 − α′2

[
1 −

∑
x

p(1−α′)/2p′(1+α′)/2

]

=
4

1 − α′2

[
1 − e

− 1−α′
2

“
ψ+ 1+α′

2
Gα′

”]
, (3)

where ψ = log Z and

1 + α′

2
Gα′ ≡ −log Z +

2
α′ − 1

× log
∑
x

p(1−α′)/2p0
(1+α′)/2. (4)
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Note that the second term of (4) is Rényi’s G-
divergence [Arndt, 2001]. It is easy to check that
Gα′ is a monotonic increasing function of Dα′

from Eq. (3), therefore arg minp0∈M Dα′(p||p0) =
arg minp0∈M Gα′(p||p0). We minimize Gα′ instead
of Dα′ hereafter.

Then what α′ should we choose to approximate
η by η0? If M is a 1-autoparallel submanifold of
S, we have to calculate the (−1)-projection of p
for the exact expectations. However, the calcula-
tion of (−1)-projection is as computationally hard
as that of direct calculation [Amari et al., 2001].
Thus we should choose a proper α′ taking account
of the computational complexity.

Because p is a distribution of the α-family,
it is represented as p(1−α)/2 = c1

∑Ñ
ν=0 θνfν + c2

with some constants c1 and c2. Suppose we choose
α′ such that the α′-divergence is a linear func-
tion of p(1−α)/2, we do not have to deal with
any nonlinear functions of {fν} to calculate the
value of Dα′(p||p0). Because of this reason, we
choose α = α′ here. In this case, Gα = −(4/(1 −
α2)) log(((1 − α)/2)

∑Ñ
ν=0 θν〈fν〉0α), with 〈fν〉0α ≡∑

x fν(x)p0
(1+α)/2(x;h). If fν(x) (ν = 0, 1, . . . , Ñ)

are functions of l variables, it takes O(Ñkl)
steps to calculate Gα. In addition, we can also
calculate

∂Gα

∂hi
= − 4

1 − α2

∑
ν

θν ∂

∂hi
〈fν〉0α∑

ν

θν〈fν〉0α
(5)

for i = 1, . . . , N at the same orders. One can easily
find h that gives a local minimum of Gα by applying
an optimization algorithm.

In this way, this approximation greatly reduces
the number of operations for systems with large N ,
while the exact calculation of η requires O(NkN )
operations in general.

3. Application to a Binary-State
Model

In this section we calculate the α-projection of a
binary-state distribution: the distribution of Eq. (1)
with x = {xi|xi ∈ {+1,−1}, i = 1, . . . , N} and∑Ñ

ν=1 θνfν(x) =
∑N

i=1

∑
j>i θ

ijxixj +
∑N

i=1 θixi.
Here we assume that minx[((1 − α)/2)

∑
ν θνfν ] =

c(> 0). We approximate p by a p0 that minimizes
the α-divergence between them. Because x is a
binary vector here, p0 is generally represented in

the following exponential form:

p0 =
1

Z0(h)
exp

(
N∑

i=1

hixi

)
. (6)

Let us introduce the following expectations,

η0
(α)
ν ≡

∑
x

fν(x)p0

(
x;

1 + α

2
h
)

=




tanh
(

1 + α

2
hi

)
tan
(

1 + α

2
hj

)
, fν = xixj

tanh
(

1 + α

2
hi

)
, fν = xi

(7)

for ν = 1, . . . , Ñ . Then we find the gradient of
Eq. (5) to be

∂Gα

∂hi
=

2
1 − α


η0i − η0

(α)
i − g0

(α)
ii

N∑
j=1

θijη0
(α)
j + θi

Ñ∑
ν=1

θνη0
(α)
ν




(8)

with g0
(α)
ii = [1− (η0

(α)
i )2]. We employ the gradient

descent algorithm to search for a local minimum of
Gα (Algorithm A in Table 1).

As the stationary condition of Algorithm A
for α → 1, we can derive the usual self-consistent
equations of the naive mean-field method: ηi =
tanh(

∑
j θijηj + θi) for i = 1, . . . , N . The reason

is that the naive mean-field equation is derived
from the saddle point condition of the 1-divergence.
Therefore, in this case, the α-projection is a gen-
eralization of the naive mean-field method for
α-families.

3.1. Numerical results

In this section we apply the method introduced
in Sec. 3 to a system with small N and compare

Table 1. Algorithm A.

1. Initialize h to small random values.

2. Calculate η0
(α)
ν , g0

(α)
iν , and ∂Gα/∂hi.

3. Update h according to

hi
new = hi

old − δ ∂Gα

∂hi ,

where δ is a step size.
4. Return to step 2; stop after finite steps n∗.
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the results with direct numerical calculations. We
also compare the results with another method that
could be applied: the mean-field approximation of
the Callen identity [Sarmento, 1995].

Let us first derive the mean-field approxima-
tion of the Callen identity here. The single-site
Callen identity is ηi = Ep[(p(xi = 1,x\i) − p(xi =
−1,x\i))/(p(xi = 1,x\i) + p(xi = −1,x\i))], where
x\i ≡ {x1, . . . , xi−1, xi+1, . . . , xN}. Employing the
naive mean-field approximation of the above equa-
tion, we obtain the self-consistent equations for η:

ηi ≈
p(xi = 1,η\i) − p(xi = −1,η\i)
p(xi = 1,η\i) + p(xi = −1,η\i)

, (9)

for all i. We can compute the approximation of η

by calculating Eq. (9) repeatedly (Algorithm B in
Table 2).

Note that Algorithm B also has the same sta-
tionary condition as the naive mean-field method
when α → 1. Therefore for α ≈ 1, their differences

Table 2. Algorithm B.

1. Initialize η0 to small random values.
2. Update η0 using Eq. (9).
3. Return to step 2; stop after finite steps n∗∗.

only come from the optimization algorithms that
we apply.

Figure 1 shows the average of normalized error:
Err ≡ (

∑N
i=1|ηi − η0i|/

∑N
i=1|ηi|) and its standard

deviation obtained from Algorithms A (cross) and
B (square) for N = 10 and c = 1. {θij} and {θi} are
generated from the Gauss distributions N (µ, 0.5)
and N (0.0, 1.0), respectively. We generate 100 sam-
ples here. Since it is generally difficult to find the
step size δ of Algorithm A, we repeat this algorithm
five times over different δ = {1.0, 6.0, 11.0} and
choose the η0 that minimizes Dα after n∗ = 30 iter-
ative steps. We carry out just one series (n∗∗ = 90
iterative steps) for Algorithm B. We show in Fig. 1
that Algorithm A gives better results for every α
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Fig. 1. The averaged normalized errors versus the mean of coupling coefficient µ.
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that are shown here. If α = −1, Dα have a unique
minimum at which η = η0 holds [Amari et al.,
2001]. Thus Algorithm A finds the exact expecta-
tions in this case, with a sufficiently small step size δ
and many iterations. On the other hand, since the
α-divergence of Eq. (3) may take extremely large
values at p ≈ 0 (resp. p0 ≈ 0) for α > 1 (resp.
α < −1), it is possible that Algorithm A extracts
poor results in these cases.

4. The Choice of Projections

What is important for the approximation of Sec. 2
is a proper choice of the projection. We have pre-
viously chosen the projection-index α′ that most
alleviate the computational cost to approximate
η. As we will see, there is a tradeoff between the
computational complexity and the accuracy of the
approximation.

If p(x; θ) is a distribution of the 1-family, i.e.
α = 1, the 1-projection is computationally the
easiest, while the (−1)-projection yields the exact
expectations [Amari et al., 2001]. As it is generally
difficult to estimate to what extent the choice of the
projection-index affects the approximation of η, we
take here the simplest model to compare several
projections.

Now we consider the α-family (|α| < 1) of
Eq. (1) with x = {xi|xi ∈ {+1,−1}, i = 1, 2}
and H(x) = θ12x1x2 + θ1x1 + θ2x2, where θ12 =
(2/(1 − α))J and θ1 = θ2 = (2/(1 − α))H.

First, a direct calculation gives the expectation
as in Eq. (13).
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Fig. 2. Approximations of η versus J .

Second, the naive mean-field approximation of
Callen identity, i.e. Eq. (9), is calculated to be
Eq. (14).

Finally, for an integer n and α′
n = 1−(1−α)n,

we can also calculate the Gα′
n of Eq. (4) to be

Eq. (15), where η
(α′)
0 = tanh(((1+α′)/2)h), (c1,H1,

J1) = (1,H, J), and

cn = cn−1 + 2HHn−1 + JJn−1, (10)
Hn = H(cn−1 + Jn−1) + (1 + J)Hn−1, (11)

Jn = Jn−1 + cn−1J + 2HHn−1, (12)

for n > 2; we choose the η0 that minimizes Eq. (15).
In Fig. 2 we show the expectations derived from

Eq. (13) (Direct), from Eq. (14) (MF), and from
Eq. (15) with n = {1, 3, 7} for α = 0.6 and H = 0.1.
Since α′

5 = −1 in this case, the α′
n-projection gives

a good approximation when n ≈ 5.

η =
[1 + 2H + J ]2/(1−α) − [1 − 2H + J ]2/(1−α)

[1 + 2H + J ]2/(1−α) + 2[1 − J ]2/(1−α) + [1 − 2H + J ]2/(1−α)
, (13)

ηMF =
[1 + H(ηMF + 1) + JηMF]2/(1−α) − [1 + H(ηMF − 1) − JηMF]2/(1−α)

[1 + H(ηMF + 1) + JηMF]2/(1−α) + [1 + H(ηMF − 1) − JηMF]2/(1−α)
, (14)

Gα′
n = − 4

1 − α′2

[
log(cn + 2Hnη

(α′)
0 + Jn(η(α′)

0 )2) − (1 + α′) log(2 cosh h) + 2 log
(

2 cosh
1 + α′

2
h

)]
. (15)

When α ≈ 1, a larger n provides a better
approximation of η (as long as M is a 1-autoparallel
submanifold of S). Thus in this case there is a trade-
off between the computational complexity and the
precision of the approximation. The method of the
α′-projection provides a parameter α′ that controls
this tradeoff.

5. Conclusion

We have shown that it is possible to realize a gen-
eralization of the mean-field method by calculating
the α-projection of power-law distributions. The
number of operations needed to approximate the
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expectations is greatly reduced with a proper choice
of the projection. We have applied this method to
a simple binary-state α-family and compared the
method with the mean-field approximation of the
Callen identity. As a result of numerical calcula-
tions, the generalized mean-field method provides
less errors for the expectations compared with the
other method, especially when it is applied to α-
families with α ≈ −1.

Although we have only considered factorizable
distributions to approximate the true distribution,
it is possible to obtain better approximation by con-
sidering a wider class of distributions. Since there
are a lot of useful techniques to deal with such struc-
tured distributions in the field of information the-
ory, this is an important problem for future study.

As α-families are attracting more and more
attention in fields such as fully developed turbu-
lence, economics and self-organized criticality, it is
important to study the applications of this method
to such complex systems.
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Appendix

A.1. Information Geometry

In this Appendix, we briefly review the frame-
work of information geometry. Information geom-
etry describes the way to introduce a geometrical
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structure into a space of probability distributions
once a divergence is given [Amari & Nagaoka, 2000].
Let S = {p(x; θ)} be an α-family. The α-divergence
between two probability distributions p = p(x; θ)
and p′ = p(x; θ′) is defined as

Dα(p||p′) ≡ 4
1 − α2

[
1 −

∑
x

p(1−α)/2p′(1+α)/2

]

(A.1)

for α �= ±1, and D±1(p||p′) ≡ limα→±1 Dα(p||p′)
for α = ±1. Note that D−1 is equivalent to the
well-known Kullback–Leibler divergence. The non-
negative property of the α-divergence, Dα(p||p′) ≥
0, is directly derived from Jensen’s inequality, where
the equality holds if and only if p = p′. It is not sym-
metric except for α = 0 and satisfies Dα(p||p′) =
D−α(p′||p). The α-divergence is a distance-like mea-
sure representing the difference between two prob-
ability distributions.

When p and p′ are close enough, i.e.
θ′ = θ + dθ, we can expand the α-divergence
between these points as Dα(p(θ)||p(θ + dθ)) =
(1/2)

∑
ν,λ gνλ(θ)dθνdθλ + o((dθ)2), where the

Fisher metric gνλ|p ≡ limp′→p ∂ν∂λDα(p||p′). θ is
the coordinate system of S and ∂ν ≡ (∂/∂θν) is the
natural basis of θ. Note that [gνλ] is a symmetric
and positive definite matrix, invariant to the value
of α [Amari & Nagaoka, 2000]. We define the inner
product of two basis at θ as 〈∂ν , ∂λ〉 ≡ gνλ(θ). Then
we can show the following two theorems (see [Amari
& Nagaoka, 2000] for proofs):

Theorem 1. Let S be an α-family, p, q and r be
three points in S, γ1 be an α-geodesic connecting
p and q and γ2 be an (−α)-geodesic connecting q
and r in S. If the curves γ1 and γ2 are ortho-
gonal at the intersection q, then the following
equality holds: Dα(p||r) = Dα(p||q) + Dα(q||r) −
((1 − α2)/4)Dα(p||q)Dα(q||r).
Theorem 2. Let S be an α-family, M a subman-
ifold of S, and p a point in S. A necessary and
sufficient condition for a point q ∈ M to be a sta-
tionary point of the function r 	→ Dα(p||r) restricted
on M is that the α-geodesic connecting p and q to
be orthogonal to M at q. We call such q as an α-
projection of p onto M.




