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We evaluate the Fisher information of a population of model neurons that receive dynamical input and
interact via spikes. With spatially independent threshold noise, the spike-based Fisher information that
summarizes the information carried by individual spike timings has a particularly simple analytical form.
We calculate the loss of information caused by abandoning spike timing and study the effect of synaptic
connections on the Fisher information. For a simple spatiotemporal input, we derive the optimal recurrent
connectivity that has a local excitation and global inhibition structure. The optimal synaptic connections
depend on the spatial or temporal feature of the input that the system is designed to code.
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Information from the environment is encoded in the
noisy activity of a population of neurons. Reading the
neural code is a fundamental problem in neuroscience. In
particular, attention has been paid to the role of precise
spike timing in addition to the spike count information
[1,2] and that of correlation between neurons [3–5] on
the information coding. However, a large amount of data
is required to evaluate the amount of information in a real
population of neurons [1,2]. Moreover, it is difficult, with
this approach, to understand the role of neuronal parame-
ters such as recurrent connectivity on the information
coding. In this study, we calculated the Fisher information
of a network of spiking neurons, which limits the accuracy
of any unbiased estimate of a stimulus [6,7]. In contrast to
the literature, where Fisher information is evaluated based
on firing rates (rate-based Fisher information) [3–8], we
evaluated the Fisher information when the individual spike
timings of all the neurons were available (spike-based
Fisher information). Interestingly, under the assumption
of independent noise, the expression of the spike-based
information has a simple analytical form. We estimated the
amount of information included in the precise timing of
spikes by comparing the information in the two cases and
studied the role of synaptic connectivity on stimulus esti-
mation. We also calculated the spike-based information for
a spatiotemporal input, where rate decoding fails, and
derived the optimal recurrent connectivity for spike-based
information representation.

Stochastic firing neuron model. From the noisy spik-
ing activity of N recurrently connected neurons in time
duration T, we decode a parameter � of a stimulus, which
is, for example, the orientation of a light bar. Neuron i�i �
1; . . . ; N� receives stimulus-dependent external input po-
tential hi�t; �� and recurrent spikes from neighboring neu-

rons. A spike from neuron j at time t
fj
j �fj � 1; . . . ; nj�

provokes a postsynaptic potential of amplitude wij and

time course ��t� t
fj
j � � e��t�t

fj
j �=�m��t� t

fj
j �, where

�m � 10 ms is the leak time constant and � is the
Heaviside step function which takes the value 1 for a
positive argument and 0 otherwise. Hence, the total input

potential of the neuron is described by ui�t� � hi�t; �� �PN
j�1 wij

Pnj
fj�1 ��t� t

fj
j �. Depending on ui, the neuron

emits a spike with instantaneous firing probability density
�i�t� � g�ui�t��R�t� t̂i�, where g�u� � gM�1�
e���u�uc���1 is a sigmoid function with parameters gM �
500 Hz, � � 8, and uc � 1, and R�t� t̂i� �

t�t̂i
�r�t�t̂i

is a

refractory factor with the last spike time, t̂i, of neuron i and
refractory time constant �r. Note that we sometimes use
the abbreviation gi�t� � g�ui�t��. Because u is not reset
after an output spike, the refractory factor may correspond
to the integration time until the next spike for a noisy leaky
integrate-and-fire model. The current model is a special
case of the spike response model [9]. We assume condi-
tionally independent instantaneous firings of neurons given
the history of spikes and the input, neglecting common
noise shared among neurons for simplicity.

Spike-based and rate-based information. The out-
put spike train of neuron i is represented by xi�t� �Pni
fi�1 ��t� t

fi
i �, where � is the Dirac delta function. The

history of the spike activity until time t is described by
X�t� � fxi�t0�ji � 1; . . . ; N; 0 � t0 < tg. Given a realiza-
tion of history X�t�, the spiking probability of the next
very short interval �t is written by using the binary vari-
ables �xi�t� �

R
t��t
t xi�t

0�dt0, where we formally define
the integral of a delta function by

R
1
0 ��t

0 � t�dt0 � 1 for
0 � t < 1 and 0 otherwise. Because we assume instanta-
neously independent firing, the spike probability is given as
a product of individual firing probabilities, i.e.,
P�f�xi�t�g

N
i�1jX�t�� �

QN
i�1 P��xi�t�jX�t��, with the indi-

vidual binary firing probabilities P��xi�t�jX�t�� �
��i�t��t��xi�t��1� �i�t��t�1��xi�t�. However, each condi-
tional firing probability depends on the past spike trains
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of all neurons through �. The Fisher information, given
spike trains of duration t, is defined by Jspike�t� �
�h@2 logP�X�t��=@�2iX�t�, where h	iX�t� is the average
with respect to P�X�t��. Applying P�X�t� �t�� �
P�f�xi�t�g

N
i�1jX�t��P�X�t��, we define the Fisher informa-

tion rate by
 

_Jspike�t� � lim
�t!0
�Jspike�t� �t� � Jspike�t��=�t

� � lim
�t!0

1

�t

�
@2 logP�f�xi�t�g

N
i�1jX�t��

@�2

�
X�t��t�

�

�XN
i�1

1

�i�t�

�
@�i�t�
@�

�
2
�
X�t�
: (1)

Except for the average over the spike history, X�t�, the
above result is well known as the Fisher information rate of
independent Poisson neurons [7]. The total spike-based
information from spike trains of duration T is given as an
integration of the information rate, i.e., Jspike �R
T
0

_Jspikedt. Particularly, for a low firing rate (if g
 gM
always holds), we can approximate the sigmoid g by an
exponential function gMe��u�uc�. This approximation gives

 

_J spike�t� �
XN
i�1

��
h0i�t�

g0i�t�
gi�t�

�
2
�i�t�

�
X�t�

�
XN
i�1

��h0i�t��
2�i�t�; (2)

where h0i�t� �
@hi�t;��
@� , g0i�t� �

@g
@u ju�ui�t�, and the mean fir-

ing rate is �i�t� � h�i�t�iX�t�. Equation (2) shows the rela-
tions of the Fisher information rate to the number of
neurons, N, to the mean firing rate, �, and to the square
of the derivative of the input potential with respect to the
parameter �. Interestingly, the spike-based information of
Eq. (2) does not explicitly depend on correlations between
neurons. We should note, however, that the mean firing
rates of neurons are modulated by synaptic connections
between them. This kind of spike-based information has
been investigated for a single neuron [1,10]. The amount of
information lost by applying rate decoding and abandoning
individual spike timing is an issue of interest [2]. However,
several previous studies on population coding assumed
only the rate decoding paradigm [3–8]. We restricted
ourselves to a simple case of a constant stimulus for a
fair comparison and investigated the role of model parame-
ters on the information loss.

Let us introduce some notation for rate decoding. We
describe by ri �

1
T

R
T
0 xi�t�dt the spike rate in the interval.

The rate-based Fisher information, Jrate �

�h@2 logP�frig
N
i�1�=@�

2ifrigNi�1
, is calculated based on the

assumption that ri is generated from a Gaussian distribu-
tion with mean �i � hrii and covariance matrix Cij �
h�ri ��i��rj ��j�i. Because Cij � 1=T for large T,
Jrate �

PN
i;j�1 �

0
iC
�1
ij �

0
j, where �0i �

@�i
@� and C�1

ij is the

(i, j) component of the inverse of the covariance matrix
[11]. Note that the Gaussian ri assumption is generally not
valid for recurrently connected networks, while we do not
need this assumption for the calculation of spike-based
information.

Independent neurons. We consider first a single neu-
ron, or equivalently, a population of neurons without re-
current connections. A neuron receives constant input,
h � 0:1�, and hence has constant g � g�h�. Because the
neuron has the renewal property with constant drive, its
spike train is completely characterized by the interspike

interval (ISI) distribution, Q�s� � gR�s�e�g
R
s

0
R�s0�ds0 [9],

where s represents an ISI and the last spike time is set to
ŝ � 0. The ISI distribution is controlled by the input
strength, h, and the refractory time constant, �r. For any
well-behaved renewal process, the probability distribution
of spike rate P�r� is asymptotically Gaussian with mean

� � � � 1=hsiQ and variance 	2 �
hs2iQ�hsi2Q
hsi2Q

�
T for large T

[12], where the average means h	iQ �
R
Q�s�ds. Hence,

the rate-based Fisher information is written as Jrate �

T ��
0�2

�Cv2 for large T with Cv2 � �hs2iQ � hsi
2
Q�=hsi

2
Q. All

these spike statistics are derived from the moment-
generating function, ��
� �

R
1
0 Q�s�e


sds � 1�

�re

�g�
��r��g� 
��r�
�1��rg��1� �rg; �g� 
��r�, where

the incomplete gamma function ���1; �2� �R
1
�2
s�1�1e�sds is used. Particularly, we find hsiQ �

�re�rg��rg��1��rg��1� �rg; �rg� and Cv2 � 2��1�
��r�=g� 1. Figure 1(a) shows g, �, Cv, and information
rates _Jspike and _Jrate of a single neuron. The Fisher infor-
mation first increases with � (cf. Equation (2)) but de-
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FIG. 1 (color online). (a) Left: The sigmoid function, g (solid
line), its approximation by an exponential function, gMe��u�uc�

(dashed line), and the firing rate, � (dotted line). The inset shows
the coefficient of variation, Cv. Right: The spike-based and rate-
based information rates _Jspike (solid line) and _Jrate (dotted line),
for different �. The refractory time constant, �r, is 10 ms. An
approximation with the exponential g is also shown (dashed
line). (b) Top: Comparison of the spike-based information rate,
_Jspike (solid line), and the rate-based one, _Jrate (dotted line), with

the sigmoid g and refractoriness, �r � 10 ms. Bottom: The same
comparison with the exponential g and without refractoriness.
We set � � 5.
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creases for high � due to the sigmoid of g. The two
information rates are similar with constant input but have
finite differences due to the refractory factor, i.e. the ob-
server can fix the value of R�t� t̂� by knowing the last
spike time, t̂. The deviation of the sigmoid of g from the
exponential function and the effect of refractoriness are
negligible at low firing rates. In the following, we assume
�r � 0 for analytical calculations.

Effect of synaptic connection. To see the effect of
recurrent connections on the information, we consider two
neurons with a one-way synaptic connection and driven by
constant input. The Gaussian ri assumption is also valid in
this case for large T. For the analytical calculation, we
neglect refractoriness and use the exponential function
g�u� � gMe

��u�uc�. We investigate the effect of sigmoid
g and refractoriness by numerical simulation. Two neurons
receive constant inputs h1 � 0:1� and h2 � 0:1�, and the
output of the first neuron is fed into the second neuron with
synaptic strength w � w21. The calculation of spike-based
information is straightforward from Eq. (2). We calculated
the two neurons’s mean firing rates and their covariance
matrix to evaluate the rate-based information. Because
�r � 0, their firing probability densities are given by �1 �
g�h1� and �2�t� � g�h2 � w

R
t
0 ��t� t

0�x1�t
0�dt0�. Using

the fact that x1 is a Poisson spike train and g is an exponen-
tial function, we can average �1 and �2 over the spike
history, X�t�, and find the mean firing rates �1 �
�1 � g�h1� and �2 � �2 � g�h2 � �

�1K�1�, where
K �

R
��t�dt with ��t� � e�w��t� � 1. The covariance

matrix, C, is calculated as C11 � �1=T, C12 � C21 �

�1�2K=T, and C22 � �2=T � �2
2L=T, where L �R

dt�e��1

R
1

jtj
��t0�dt0��1

R
1

0
e�w��t

0 ���jtj�t0�dt0
� 1�. In this way,

we can also calculate the rate-based Fisher information.
Taking the limit as w! 1, we find Jrate ! T��h1�

2�1,
which is the amount of information from neuron 1. Hence,
the output of neuron 2 does not add any additional infor-
mation at this limit. Signal h2 is buried in the noisy post-
synaptic potential of neuron 1 for large w. On the other
hand, within the spike decoding paradigm, neuron 2 can
still transmit information on h2 because the observer
knows when neuron 1 fired. The rate-based and spike-
based Fisher information is compared for a range of the
synaptic strength w in Fig. 1(b). The spike-based Fisher
information is significantly larger than the rate-based in-
formation for strong synaptic connectivity. This result is
qualitatively similar even when we use the sigmoid g and
refractoriness. One difference is that the spike-based in-
formation shows unlimited growth with the exponential g
because �g02�

2=g2 is an increasing function of w. However,
the spike-based information decreases for large w with the
sigmoid g.

Spatiotemporal input. We are most interested in see-
ing how the correlation among a population of neurons
alters the efficacy of stimulus estimation [3–5]. The effect
of recurrent connectivity on stimulus estimation has been

studied mainly within the rate decoding framework
[13,14], where spatially structured synaptic connections
with local excitation and global inhibition are used.
Moreover, calculating the rate-based Fisher information
with recurrent connections is computationally hard be-
cause it requires the inverse of the output covariance
matrix. In the following, we apply the spike decoding
paradigm by taking account of individual spike timings,
and calculate the spike-based Fisher information to esti-
mate stimulus onsets or locations. The optimal recurrent
connectivity that maximizes the spike-based information is
derived under certain conditions on synaptic strength.

We consider a population, N � 103, of recurrently con-
nected neurons evenly distributed with density 
 �
N=�2�� on a circle ��< z � �, where z refers to a
preferred stimulus of a neuron. The synaptic strength
from a neuron at z0 to one at z is a function of only the
difference between their preferred stimuli, � � z� z0,
which is described by w���. As an example of a spatio-
temporal stimulus, we consider a localized pulse centered
at ~z injected at time ~t. The input potential to a neuron at z is
described by a differential equation, �m

dh�z;t�
dt ��h�z;t��

As�1�cos�z�~z����t�~t����s� t�~t�, where the stimu-
lus strength, As, is 1=4 and the stimulus duration, �s, is
100 ms. The stimulus location, ~z, and the onset time, ~t, are
the parameters to be estimated from the output spikes. The
information, Jspike

z and Jspike
t , for estimating ~z and ~t is

calculated from Eq. (1) by substituting � � ~z and � � ~t,
respectively, i.e. Jspike �

R
T
0 dt

R
�
�� 
dzh�h

0
i�z; t�g

0
i�t��

2=
gi�t�iX�T� with h0�z; t� � @h�z;t�

@� . Assuming a small synaptic
strength, we calculate the optimal synaptic strength,w, that
maximizes Jspike under constraints on the first two mo-
ments of synaptic strength; i.e. excitatory and inhibi-
tory synapses are balanced,

R
�
�� w���
d� � 0, and the

square norm of the synaptic strengths is restricted,R
�
�� w

2���
d� � N�1. Hence, the objective function is
L � Jspike � �1

R
�
�� w���
d� � �2

R
�
�� w

2���
d� with
Lagrange multipliers �1 and �2. We calculate the spike-
based Fisher information up to the first order of w. The
zero-order term is given by the spike-based information of
independent neurons, Jspikejw�0. The first-order term isR
T
0 dt��z; t��0�z; t�

R
�
��
d�w���

R
dt0��t� t0��0�z� �; t0�,

where the zero-order instantaneous firing rate,
�0�z; t� � g0�z; t�, is g�h�z; t��, and the coefficient
��z; t� � �h0�z; t�g00�z; t�=g0�z; t��

2�2g000 �z; t�=g
0
0�z; t� �

g00�z; t�=g0�z; t��. The optimality condition is represented
by a functional differentiation, �L

�w��� � 0. This leads to the
optimal synaptic strength

 w���/
Z T

0
dt
Z
dt0
Z �

��

dz��z;t���t� t0��0�z;t��0�z

��;t0� (3)

up to a constant. The constant and the proportionality
coefficient in Eq. (3) depend on �1 and �2, which are set
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to satisfy the constraints on the synaptic strength.
Moreover, Eq. (3) has the causal Hebbian property.
Equation (3) is proportional to the causal pre- and post-
correlation ��t� t0��0�t; z��0�t

0; z� ��, whose learning
coefficient is given by ��z; t� to enhance the stimulus
difference. The optimal recurrent connections to estimate
~z and ~t are described by wlocation and wonset, respectively,
and shown in Fig. 2(a). Both wlocation and wonset have local
excitation and global inhibition structures, which are ob-
served in various neural systems. However, the precise
shape of w depends on the feature of the given stimulus
that the system is designed to code. In Fig. 2(b), the
information Jspike

z and Jspike
t is plotted for three types of

synaptic connectivity: no recurrent connection (w � 0),
wlocation, and wonset. The improvement in the information,
Jspike
z and Jspike

t , due to having synaptic connections
wlocation (solid line) and wonset (dashed line) is plotted in
Fig. 2(c). The improvements are limited because the syn-
apses are assumed to be small for the analytical calcula-
tion. Sharper tuning curves are known to be desirable for
one-dimensional stimulus estimation with independent
Poisson neurons [15]. This sharpening of tuning curves
corresponds to the one by a sharper input, h, without
recurrent connections. On the other hand, sharpening of
tuning curves by recurrent connections does not always
lead to a better estimation [13,14]. The result shows that
the optimal recurrent connections are determined by the
subtle interplay between the input stimulus and the re-
sponse properties of neurons. The optimal recurrent con-
nections provide, by modulating the recurrent input to each
neuron, an efficient encoding of the stimulus parameter
that minimizes the information loss because of the noisy
spike-generation process. As is in the case of Seriès et al.,
we can not increase the information by postprocessing a
stimulus with a network of recurrently connected neurons
[13]. Evaluating the spike-based Fisher information, we

can identify the information in individual spike timing that
codes temporal features of input, such as stimulus onset.
This kind of temporal feature is difficult to decode from
spike rates with wide temporal windows.

We calculated the spike-based Fisher information of a
population of recurrently connected spiking neurons with
independent threshold noise. Unlike the case of [16], the
Fisher information is expected to give a reasonable lower
bound of the estimation error because the estimation is
based on a large number of independent spikes.
Generalizing the spike-based Fisher information to esti-
mate a multidimensional parameter is straightforward.
Although we restricted ourselves to weak synapses for
the calculation of the optimal recurrent connections,
stronger synapses should also be studied to elucidate the
role of nonlinearity in output firing rates and sustained
activity in networks.
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FIG. 2 (color online). (a) The optimal synaptic strengths
wlocation (solid line) for the estimation of the stimulus location,
~z, and wonset (dashed line) for the stimulus onset, ~t. (b) The spike-
based Fisher information, Jspike

z for the estimation of ~z and Jspike
t

for the estimation of ~t, is plotted for three types of synaptic
connectivity: no synaptic connection (w � 0, cross), wlocation

(plus sign), and wonset (asterisk). (c) Comparison of the improve-
ment when having wlocation (solid line) and wonset (dashed line)
from having no synaptic connectivity. The increases in the spike-
based Fisher information, Jspike

z and Jspike
t , are plotted.
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