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Many cognitive processes rely on the ability of the brain to hold se-
quences of events in short-term memory. Recent studies have revealed
that such memory can be read out from the transient dynamics of a net-
work of neurons. However, the memory performance of such a network
in buffering past information has been rigorously estimated only in net-
works of linear neurons. When signal gain is kept low, so that neurons
operate primarily in the linear part of their response nonlinearity, the
memory lifetime is bounded by the square root of the network size. In
this work, I demonstrate that it is possible to achieve a memory lifetime
almost proportional to the network size, “an extensive memory lifetime,”
when the nonlinearity of neurons is appropriately used. The analysis
of neural activity revealed that nonlinear dynamics prevented the accu-
mulation of noise by partially removing noise in each time step. With
this error-correcting mechanism, I demonstrate that a memory lifetime of
order N/log N can be achieved.

1 Introduction

Buffering a sequence of events in the activity of neurons is an important
property of the brain that is necessary to carry out many cognitive tasks
(Baddeley, 2000; Baeg et al., 2003; de Fockert, Rees, Frith, & Lavie, 2001;
Hahnloser, Kozhevnikov, & Fee, 2002; Münte, Schiltz, & Kutas, 1998; Orlov,
Yakovlev, Hochstein, & Zohary, 2000; Pastalkova, Itskov, Amarasingham,
& Buzsáki, 2008). The fundamental limit of the capacity of the sequential
memory is, however, largely unknown. Some work has suggested that a
long memory lifetime can arise as a network property of neurons, where
individual neurons typically have limited memory (Goldman, 2009; Lim
& Goldman, 2011; White, Lee, & Sompolinsky, 2004; Toyoizumi & Abbott,
2011). However, the structures and operating regimes suitable for a net-
work of neurons to buffer a sequence of events are unknown. This letter
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investigates the limit of such sequential memory for buffering past stimuli
in the presence of dynamical noise. More specifically, we examine how re-
constructions of past stimuli degrade as we trace them into the past. This
kind of working memory generally improves with the size of the network.
Hence, important questions are how the memory lifetime scales with net-
work size, and what kind of network structure achieves the longest memory
lifetime. The scaling of the memory lifetime to the network size has been
rigorously characterized only under limited conditions (Ganguli, Huh, &
Sompolinsky, 2008; White et al., 2004). In particular, the memory lifetime
for nonsaturating linear neurons can be proportional to the network size,
N, which is, from an information-theoretical perspective, the best possible
situation for reconstructing all sequences of nonsparse input (Ganguli &
Sompolinsky, 2010). This is called the extensive memory lifetime. Ganguli
et al. also estimated the memory lifetime of a network of neurons with re-
sponse nonlinearity but under a rather restricted condition where the signal
gain was kept small so that neurons operated in their linear regime. Under
this condition, the sequential memory lifetime is upper-bounded by ∼√

N
(Ganguli et al., 2008). However, as we will see, fine-tuning of a network
parameter is necessary for this to work.

I explore in this letter a network structure that yields a long-lasting
sequential memory that is longer than the bound previously set for non-
linear neurons. This network structure is a simple feedforward network
with a fixed number of neurons in one layer. This network architecture has
been studied in the context of synchronous-firing chains, that is, synfire
chains (Abeles, 1982; Bienenstock, 1995; Diesmann, Gewaltig, & Aertsen,
1999; Herrmann, Hertz, & Prügel-Bennett, 1995; Kumar, Rotter, & Aertsen,
2008; Rossum, Turrigiano, & Nelson, 2002; Vogels & Abbott, 2005). In the
current context, reliable propagation of synfire activity is used to maintain
information on past sequences. Although reliable propagation of synfire
activity in the presence of noise has been reported several times, quanti-
tative characterization of such reliability has been only partially achieved.
In particular, previous studies did not systematically evaluate the effect of
occasional strong noise that spontaneously ignites or blocks synfire activity
(Bienenstock, 1995; Herrmann et al., 1995). As we will see, this occasional
large noise prevents a network from achieving an extensive memory life-
time. The scaling of the memory lifetime to the network size in the presence
of such noise has not yet been reported to my knowledge.

In this letter, I analytically evaluate the effects of response nonlinearity
and noise on the performance of sequential memory. The main result is the
following. If we require a network of N neurons to hold I bits of information
about stimulus presented at each time, the achievable memory lifetime is
proportional to (N/I)/log (N/I), which is much longer than the previously
proposed order

√
N memory, assuming a small gain. Moreover, the non-

linear dynamics of neurons drastically improves the tolerance of working
memory to noise levels compared to the previously proposed semilinear
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Figure 1: Simple feedforward network model of size N. There are n neurons in
each layer and L = N/n successive layers. Each neuron is connected to all the
neurons in the previous layer with a uniform synaptic strength. We study how
the input of strength, r0, propagates down the feedforward chain.

dynamical regime. Numerical simulations show that complex firing se-
quences of leaky integrate-and-fire neurons are successfully buffered by
this network architecture.

2 Result

In order to derive the memory lifetime of feedforward networks, I consider
a simple firing rate model of neurons with saturating response nonlinearity.
We first aim at reconstructing a sequence of binary input but show later that
it is straightforward to generalize this scheme to reconstruct sequences of
analog input.

2.1 Evaluating the Memory Lifetime for Interacting Nonlinear Neu-
rons. To study what effects response nonlinearity has on the memory life-
time in a simple system, we consider the dynamics of a homogeneous
feedforward network of L layers (see Figure 1), where each layer has n neu-
rons, and the total number of neurons in the network is given by N = nL.
Let us consider discrete-time dynamics here for simplicity. The activity of
neuron i in layer l + 1 at time t + 1 is modeled as

ri(t + 1) = φ

⎛
⎝∑

j∈Sl

wi jr j(t) + σξi(t + 1)

⎞
⎠ , (2.1)

where φ is the response nonlinearity, Sl is a set of n neurons in layer l,
wi j = 1/n is the uniform synaptic strength from neuron j in layer l to neuron
i in layer l + 1, σ is the magnitude of noise, and ξi is an independent white
gaussian random variable of unit variance that describes the postsynaptic
noise to neuron i. Here, in order to better distinguish the effect of the
nonlinearity from the signal-to-noise ratio, we fix the magnitude of synaptic
strength and instead change the slope of the nonlinearity and the parameter
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σ that controls the noise level relative to the input from the previous layer.1

The time-dependent input to the network is described by r0(t) and fed only
to the first layer. For simplicity, we assume a sequence of binary input that
takes either a positive or negative value of the same magnitude. Because
the input to the network at each time step propagates separately in this
feedforward model, we drop the time index, t, in the following and focus
on the propagation of a certain binary input signal, r0. The information
about input degrades as the activity travels down the chain due to noise.
The task is to find the maximum number of layers L until information about
the binary input reliably propagates.

Let r̄l ≡ 1
n

∑
i∈Sl

ri be the average activity of the neurons in layer l. Because
of the uniform coupling strengths, wi j = 1/n, between adjacent layers, the
average activity of layer l + 1 is given in terms of the average activity of
layer l by

r̄l+1 = 1
n

∑
i∈Sl+1

φ(r̄l + σξi). (2.2)

Note that equation 2.2 is derived by averaging both sides of equation 2.1
with i ∈ Sl+1. Here, r̄l+1 is the sum of n independent and identically dis-
tributed random variables. Hence, by using the central limit theorem, the
conditional distribution, P(r̄l+1|r̄l ), approaches a gaussian distribution,

P(r̄l+1|r̄l ) ≈ N
(

μ(r̄l ),
v(r̄l )

n

)
, (2.3)

for a large n. This distribution is characterized by the conditional mean,
μ(r̄l ), and the conditional variance, v(r̄l )/n, calculated as

μ(r̄) =
∫

φ(r̄ + σξ )Dξ,

v(r̄) =
∫

φ2(r̄ + σξ )Dξ − μ2(r̄), (2.4)

where Dξ = e−ξ2/2√
2π

dξ describes a gaussian integral. These two quantities, μ

and v, are plotted in Figure 2 for φ(x) = tanh(βx). With this conditional
probability and for a given input r0, the probability distribution of the
average activity in the final layer can be formally described as P(r̄L|r0) =∫ · · · ∫ P(r̄L|r̄L−1)P(r̄L−1|r̄L−2) · · · P(r̄1|r0)dr̄L−1dr̄L−2 · · · dr̄1, which is sufficient
to characterize the memory degradation at layer L.

1We change the slope of φ by introducing scaling parameter β, with which the nonlin-
earity is written as φ(x) = ϕ(βx) for some fixed nonlinearity ϕ.
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Figure 2: Conditional probability P(r̄l+1|r̄l ) of the average activity. The thick
solid line is the conditional mean, μ(r̄l ), and the gray band is the conditional
standard deviation,

√
v(r̄l )/n. The thin solid line indicates the condition r̄l+1 = r̄l ,

and the dashed line shows the nonlinear response function φ(x) = tanh(βx).
(A) The slope of φ is β = 0.8. Here, r̄ = μ(r̄) has only one attracting solution at
r̄ = 0. Hence, the activity tends to decay toward 0. (B) The slope of φ is β = 2.
Here, r̄l+1 = μ(r̄l ) has three fixed points: two (r̄ ≈ ±0.9) are attractive, and one
(r̄ = 0) is repulsive. When r̄ is close to one of the attracting fixed points, noise
does not accumulate because it is partially removed at each time step. Other
parameters are set to σ = 0.3 and n = 10.

In the following, let us consider a class of odd saturating nonlinearity
such as φ(x) = tanh(βx).2 For this class of functions, we can show that the
conditional mean, μ, is also odd and saturating. This means that the slope
of μ is steepest at the origin (μ′(x) < μ′(0) for x 	= 0). Let us first consider a
trivial case, where the conditional variance, v(r̄)/n, is small and negligible.
In this case, the dynamics is well approximated by a deterministic update
equation of the mean activity, r̄l+1 = μ(r̄l ). Because μ(0) = 0 for odd φ,
r̄ = 0 is always a fixed point in this dynamics. Let us call the slope μ′(0)

gain. If the gain is small (μ′(0) < 1), r̄ = 0 is a unique and stable fixed point
because μ is saturating. The average activity must decay toward 0 (see
Figure 2A). And if the gain is large (μ′(0) > 1), r̄ = 0 becomes an unstable
fixed point, and two stable fixed points (one positive and one negative)
appear (see Figure 2B). Hence, the average activity converges to either the
positive or the negative fixed point depending on the sign of the input r0. In
general, when the conditional variance v(r̄)/n is not negligible, the activity
fluctuates around the deterministic dynamics described above, but the trend
is similar. One important property is that while the conditional mean, μ(r̄), is
independent of the number of neurons per layer, n, the conditional variance

2More precisely, we consider a class of functions that satisfy φ(x) = −φ(−x) (odd),
|φ(x)| ≤ 1 (bounded), φ′(|x|) > 0 (increasing), and φ′′(|x|) < 0 (saturating).
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v(r̄)/n decreases as n increases. Hence, when the gain is small (μ′(0) < 1),
increasing the number of neurons in each layer does not prevent the average
activity from decaying. This means that the memory lifetime is of order 1;
the memory lifetime does not scale with the number of neurons in each layer
and is determined by the gain. In contrast to the above case, when the gain
is large (μ′(0) > 1) and the activity approaches one of the attracting fixed
points, the memory degrades due to the conditional variance, v(r̄)/n, and,
hence, due to finite n. This memory decay can be slowed by increasing the
number of neurons in each layer. Even with additional noise at each time
step, the attracting force toward one of the stable fixed points can partially
remove this noise. This error-correcting dynamics that prevents noise from
accumulating becomes essential for the nearly extensive memory lifetime,
as we will see in what follows.

Let us introduce an intuitive overview of how ∼N/log N memory life-
time is derived. According to the attractor dynamics described above, the
average activity near an attracting fixed point can be driven closer to the
other attracting fixed point only when uncommonly large noise occurs.
We estimate how often this rare flipping occurs. The central limit theo-
rem of equation 2.3 states that the effective noise level inversely decreases
with the number of neurons in each layer, n. Kramers’ escape rate (Risken,
1996) yields that the probability of the activity flipping from one attract-
ing basin to the other in a particular layer is approximately e−n, where
constant factors and higher-order terms are neglected. Hence, the probabil-
ity that no flipping occurs throughout L = N/n successive layers is about
(1 − e−n)L ≈ exp(−(N/n)e−n), with which the input is correctly estimated
from the activity of the final layer. It is easy to see that in order to keep this
probability finite in the limit of large N, n should increase asymptotically
faster than or equal to log N. Therefore, the best achievable memory lifetime
is L ∼ N/log N.

Let us more rigorously evaluate a lower bound for the memory lifetime
when the dynamics is sufficiently nonlinear (μ′(0) > 1). In this case, we can
choose a positive constant rc, which satisfies μ(rc) > rc (see Figure 2B). The
basic strategy is to ensure with high probability that the average activity in
the final layer is r̄L ≥ rc if the input is also r0 ≥ rc. Because of the symmetry
of the system, this condition also guarantees that the activity is r̄L ≤ −rc if
the input is r0 ≤ −rc. Using the gaussian assumptions of P(r̄l+1|r̄l ) for given
r̄l (see equation 2.3), the probability of r̄l+1 ≥ rc is expressed in terms of the
error function by

P(r̄l+1 ≥ rc|r̄l ) =
∫ ∞

rc

dr̄l+1 P(r̄l+1|r̄l )

= 1 − 1
2

erfc

(√
n
2

μ(r̄l ) − rc√
v(r̄l )

)
. (2.5)
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Therefore, for any r̄l ≥ rc, the probability of equation 2.5 is lower-bounded
by

P(r̄l+1 ≥ rc|r̄l ) ≥ 1 − 1
2

erfc

(√
n
2

zc

)
, (2.6)

where

zc ≡ min
r̄l≥rc

μ(r̄l ) − rc√
v(r̄l )

>
μ(rc) − rc√
1 − μ2(rc)

> 0 (2.7)

is a positive constant because μ(rc) > rc. To obtain the first inequality in
equation 2.7 we used two properties: the variance of equation 2.4 is upper-
bounded by v(r̄) ≤ 1 − μ2(r̄) if |φ(x)| < 1, and μ is monotonically increasing
with monotonically increasing φ (because μ′(r) = ∫

φ′(r + σξ )Dξ > 0). The
right-hand side of equation 2.6 can take a value close to 1 for large n (>2/z2

c ),
suggesting that the average activity tends to remain in the same interval
(r̄ ≥ rc) as the previous layer with high probability. If we assume that the
input to the first layer is r0 > rc, the probability that the average activity
will reliably propagate through all layers without ever escaping below rc is

Pc ≡ P({r̄l ≥ rc}L
l=1|r0)

=
∫ ∞

rc

· · ·
∫ ∞

rc

L∏
l=1

[
P(r̄l |r̄l−1)dr̄l

]

≥
L∏

l=1

[
1 − 1

2
erfc

(√
n
2

zc

)]

=
[

1 − 1
2

erfc

(√
n
2

zc

)]L

, (2.8)

where equation 2.6 is used in the third line. To guarantee a certain level of
reliability, Pc, at the end of the chain, the length of the chain, L, must be
restricted by equation 2.8; that is, the length of the chain is at most

L = log Pc

log
[
1 − 1

2 erfc
(√

n
2 zc

)]

≈ −2 log Pc

erfc
(√

n
2 zc

)
≈C

√
n e

n
2 z2

c , (2.9)
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where C ≡ −√
2πzc log Pc and, in the last two lines, higher-order terms are

neglected assuming a large n. Thus, the number of layers where activity
can reliably propagate increases as the number of neurons in each layer
increases. There is a constraint, on the other hand, on the total number of
neurons in the network,

N = nL = Cn3/2 e
n
2 z2

c , (2.10)

where the second equality follows assuming equation 2.9. For large N, this
equation yields to the leading order, n ∼ (2/z2

c ) log N. Therefore, a memory
lifetime of

L = N
n

∼ z2
c

2
N

log N
(2.11)

can be achieved with n ∼ (2/z2
c ) log N neurons per layer. Because of the

symmetry of the system, we can repeat a similar argument for r0 < −rc and
find that the scaling is the same. The proportionality factor z2

c in equation
2.11 describes the signal-to-noise ratio. This factor takes a small value if rc
is small compared with the noise, showing a minimum input intensity for
the network to store sequential memory reliably. Although equation 2.11 is
a lower bound for the memory lifetime as the inequality in equation 2.8 is
not necessarily tight, we can expect that the derived scaling behavior to N is
correct. This is because we can also upper-bound the probability of equation
2.5 using the same functional form as equation 2.6 but with another constant
factor greater than zc. The derived scaling of the memory lifetime of order
N/log N is much better than the previously suggested Ganguli et al. (2008)
scaling of order

√
N for large N.

Although only a limited amount of information (at most 1 bit) can be
transmitted by the above network, it is easy to increase the amount of infor-
mation through the parallel use of k chains. Provided there is independent
input to each chain, the information transmitted through the parallel chains
becomes k times larger than that through a single chain. While this solution
requires k times more neurons than a single chain, this does not alter the
scaling of the memory lifetime to N. Therefore, the memory lifetime for re-
liably reconstructing sequences of ∼k bits of information in each time step
is ∼(N/k)/log (N/k). More quantitatively, based on the assumption that the
input to each chain independently takes a positive or negative value of the
same magnitude with equal probability, the mutual information between
the input and the average activity in the final layer is, by symmetry,

I(r0; r̄L) = k(1 − H2(Pc)) (2.12)
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in bits, where the noise entropy, H2(Pc) ≡ −Pc log2 Pc − (1 − Pc) log2(1 − Pc),
is about 0.5 bits if Pc = 0.9. This means that the nonlinear feedforward chains
can sustain I bits of information about the input for a duration proportional
to (N/I) log(N/I).

2.2 Numerical Verification of the Nearly Extensive Memory Lifetime.
As an example, let us consider the sign nonlinearity, φ(x) = sgn(x). The
corresponding conditional mean is given by μ(r̄) = erf( r̄√

2σ
). With these bi-

nary neurons, where each neuron takes either an active (r = +1) or inactive
(r = −1) state, it is easy to numerically evaluate the memory lifetime be-
cause the average activity r̄ in each layer can take only n + 1 discrete values.
For example, when m(m = 0, 1, . . . , n) neurons in layer l + 1 are active and
n−m neurons are inactive, the average activity in this layer is

r̄l+1 = m
n

− n − m
n

= 2m − n
n

. (2.13)

Hence, the conditional probability distribution is given in terms of a bino-
mial distribution by

P
(

r̄l+1 = 2m − n
n

∣∣∣∣r̄l

)
=

(
n
m

)(
1 + μ(r̄l )

2

)m (
1 − μ(r̄l )

2

)n−m

, (2.14)

where (1 + μ(r̄l ))/2 and (1 − μ(r̄l ))/2 are the respective probabilities that
a neuron in layer l + 1 will take an active or inactive state. The conditional
distribution of equation 2.14 over all possible input and output states can be
described as an n + 1 by n + 1 square matrix. In particular, the distribution
of average activity in the final layer, P(r̄L|r0), can be computed by evaluating
the Lth power of this matrix. We assume a decoder that estimates the sign of
r0 based on the sign of r̄L. This means that the performance is good if P(r̄L >

0|r0) ≈ 1 for positive r0, and this condition also ensures P(r̄L < 0|r0) ≈ 1 for
negative r0 by the symmetry.

Figure 3 plots the number of layers L, beyond which probability P(r̄L >

0|r0) falls to less than 90% at two noise levels, σ = 0.4 and 0.6. The number
of neurons in each layer, n, was chosen to maximize the memory lifetime
under a constraint that the total number of neurons is N. We used two
inputs, r0 = 1.0 and r0 = 0.3, in the simulation, but the scaling of the memory
lifetime was not sensitive to the input r0. We can see from Figure 3 that the
memory lifetime is asymptotically proportional to N/log N, as predicted by
the theory. Note that if the input is too small compared to the noise level
(r0 
 σ ), the asymptotic behavior is apparent only at very large N because a
large number of neurons (� σ 2/r2

0) is required to achieve the 90% reliability
criterion even in the first layer.
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Figure 3: Memory lifetime of binary neurons is scaled close to the network size.
The memory lifetime, L, was evaluated at two noise levels, σ = 0.4 (black solid)
and σ = 0.6 (gray solid), and two inputs: r0 = 1.0 (Left) and r0 = 0.3 (Right).
The offset of two curves at different noise levels reflects the different number
of neurons in each layer, n, chosen to achieve the 90% decoding criterion. The
scaling behavior was well fitted by ∼N/log N in all cases, as suggested by the
theoretical result.

2.3 Nonlinear Dynamics Provides Robust Working Memory. We saw
in the previous section that a nearly extensive memory lifetime can be
achieved by utilizing the error-correcting property of nonlinear neural dy-
namics. In this section, I show that the sequential memory in this regime
is much more robust to network parameters than the previously proposed
solution in the semilinear regime (Ganguli et al., 2008).

To better compare the sequential memory in a nonlinear versus semilin-
ear regime, let us clarify our goal. The goal is to maximize the length of the
feedforward chain(s) while maintaining I bits of mutual information about
the input until the end of the chain(s). In this section, we consider that the
input, r0, is randomly drawn from a gaussian distribution of mean zero
and variance σ 2

0 . Because the information about the input must degrade in
the presence of noise as activity propagates down the layers, it suffices to
constrain the information in the final layer; that is, the mutual information
between the input and the average activity in the final layer must satisfy

I(r0; r̄L) ≥ I. (2.15)

Let us now review the sequential memory in the semilinear regime (Ganguli
et al., 2008). The feedforward network structure in this setting is similar to
the one used in this letter except that the number of neurons in each layer,
nl for layer l, can vary. The total number of neurons is given by N = ∑L

l=1 nl .
The derivation of equations 2.3 and 2.4 is analogous to the variable number
of neurons in each layer. When the activity is small, the conditional mean
of equation 2.4 is well approximated by a linear function with slope (gain)
μ′(0). As previously explained, if the gain is smaller than 1, the signal tends
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to decay toward zero, and if the gain is larger than 1, the signal tends
to grow until nonlinearity eventually kicks in (see Figure 2). The optimal
semilinear solution is achieved by setting the gain equal to 1 so that the
signal neither decays nor grows on average, and memory degrades only
due to fluctuation of the activity. In this case, the memory lifetime can
scale with

√
N (Ganguli et al., 2008). To implement this semilinear solution,

however, some fine-tuning is required. For example, Ganguli et al. simply
used φ(x) = tanh(x) without explicitly considering the effect of noise that
reduces the gain (Herrmann et al., 1995). Because the slope of φ(x) = tanh(x)

is always less than 1 except at the origin, the gain must be strictly less than
1 in the presence of noise (μ′(0) = ∫

Dξφ′(σξ ) < 1). This means that the
signal must decay at each time step by the factor μ′(0) < 1, and because
the gain is independent of the number of neurons, the memory lifetime
is indeed order 1 rather than

√
N. To implement the memory lifetime of

∼√
N, one needs to fine-tune parameters such as the slope β of nonlinearity

φ(x) = tanh(βx). The solution of β that yields μ′(0) = 1 deviates from β = 1
as the noise level increases, and this difference becomes apparent at large
N. One should also note that the fine-tuning of the slope, β, provides a
linear relation only at around zero activity (r̄ ≈ 0). If the activity is large in
magnitude, the signal tends to decay due to nonlinear effects.

Suppose we fine-tuned the gain to 1 and assumed the linear input-
output relation (which is not true if the signal or noise is large). It is easy
then to estimate the mutual information between input and output because
P(r̄L|r0) is approximately gaussian. The signal-to-noise ratio in the final
layer is described by σ 2

0 /(
∑L

l=1 σ 2/nl ), where the signal ∼σ0 is preserved by
setting the gain equal to 1 and the noise of variance σ 2/nl is added in each
layer. Hence, under this semilinear scheme, the mutual information is

I(r0; r̄L) = 1
2

log2

⎡
⎣1 + σ 2

0

Lσ 2

(
1
L

L∑
l=1

1
nl

)−1⎤⎦

≤ 1
2

log2

⎡
⎣1 + σ 2

0

Lσ 2

(
1

1
L

∑L
l=1 nl

)−1
⎤
⎦

= 1
2

log2

[
1 + Nσ 2

0

L2σ 2

]
, (2.16)

where the second line follows due to the convexity of the 1/x function,
and the equality holds if and only if the number of neurons in each layer
is uniform (nl = N/L for all l) (Lim & Goldman, 2011). Hence, the best
achievable memory lifetime that guarantees I bits of information about
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input under this semilinear scheme is

L = min

(
σ0

σ

√
N

22I − 1
, N

)
, (2.17)

where min takes the minimum argument. This means that unless the num-
ber of neurons is small, N < (σ 2

0 /σ 2)/(22I − 1), the memory lifetime of the
semilinear network is proportional to

√
N and exponentially decreases with

I, suggesting that it is difficult to maintain precise information about input
in this setting. If a large amount of information is required, however, we
can apply the parallel scheme used in section 2.1 to the semilinear memory
by dividing N neurons to k parallel chains, where each chain consists of N/k
neurons. Provided there is independent input to each chain, a single chain
needs to retain only I/k bits of information in the final layers. Hence, the
memory lifetime of the semilinear parallel chains becomes

L = min

⎛
⎝σ0

σ

√
(N/k)

22I/k − 1
,

N
k

⎞
⎠ . (2.18)

In equation 2.18, the first and second arguments of min(·) are increasing
and decreasing functions of k, respectively. Hence, the best memory lifetime
for large N is given by

L ≈ σ0

σ

√
N

(2 log 2)I
(2.19)

at k ≈ (σ/σ0)
√

(2 log 2)NI, where each chain needs to retain much less in-
formation than the single chain scheme. Although the use of parallel chains
does not alter the asymptotic scaling of memory lifetime to N, it is also
beneficial in the semilinear regime to buffer a large amount of informa-
tion. Comparing the memory lifetime in two regimes, ∼(N/I) log(N/I) in
the nonlinear regime and ∼√

N/I in the semilinear regime, we can conclude
that the memory lifetime to retain the same amount of information increases
asymptotically faster with N in the nonlinear regime than in the semilinear
regime.

In practice, the network size N is always finite. Hence, whether we see
the differences in the order 1,

√
N, and N/log N memory lifetimes depends

on the network size. I therefore investigated three different networks with
about the same number of total neurons N and the same number of layers L:
the fan-out network (Ganguli et al., 2008) with a linearly increasing number
of neurons along layers (nl = l) and β = 1; the semilinear network with a
fixed number of neurons in each layer and a β solution that yielded a gain
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Figure 4: The nonlinear network outperformed the semilinear network for large
network sizes or with large noise. A gaussian random input with zero mean
and standard deviation σ0 = 0.5 was provided to the first layer, and the perfor-
mance was measured by the mutual information of the input and the activity
in the final layer. The sequential memory performance was numerically exam-
ined at noise level σ , shown in each panel and with two nonlinear functions:
(A) the hyperbolic tangent nonlinearity φ(x) = tanh(βx) and (B) a piecewise-
linear function φ(x) = βx for |x| < 1/β with hard saturating bounds (LHB).
Three types of networks were compared with approximately the same size,
N, and the same number of layers L ≈ √

2N for a fair comparison: the fan-out
network Ganguli et al. (2008) with β = 1 and a linearly increasing number of
neurons along deeper layers (nl = l; order 1 memory lifetime); the semilinear
network with a β solution that yielded a gain equal to 1 and a fixed number of
neurons in each layer (nl = N/L; order

√
N memory lifetime); and the nonlin-

ear network with the same network architecture as the semilinear network but
with β = 2 (nl = N/L, order N/log N memory lifetime). The semilinear network
always showed better performance than the fan-out network, and the nonlinear
network was superior to the other two except at a small network size and with
a small amount of noise.

equal to 1; and the nonlinear network, which had the same network archi-
tecture as the semilinear network but with β = 2 (and a gain greater than 1).
For a fair comparison, the number of neurons per layer was adjusted for the
semilinear and nonlinear networks so that the total number of neurons was
approximately the same as that of the fan-out network: N = L(L + 1)/2.
Figure 4A shows the mutual information between the gaussian input
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(σ0 = 0.5) and the activity in the final layer for the three networks intro-
duced above for various network sizes with φ(x) = tanh(βx). When noise
was small (σ = 0.1), the performance of the semilinear and fan-out networks
was superior to that of the nonlinear network with a small network size. This
was because the nonlinear network squashed the analog inputs to almost
binary values, reducing information down to about 1 bit, but the fan-out and
semilinear networks were able to retain more than one bit of information at
a small network size and with low noise. As expected, the semilinear net-
work preserved more information than the fan-out network because of the
fine-tuning of β and the optimal network architecture. When the network
size was larger than 500, the nonlinear network preserved more information
than the other networks. At a slightly higher noise level (σ = 0.2), the non-
linear network always outperformed the other two in the range of network
sizes examined. Note that the mutual information of the nonlinear network
increased with the network size here because the number of layers was
matched to the fan-out network. This means that the nonlinear chain can
be significantly longer than the fan-out and semilinear chains to achieve a
comparable level of mutual information. Figure 4B shows results analogous
to Figure 4A but using for φ a linear function with hard saturating bounds
(LHB): φ(x) = sgn(x) min(|βx|, 1). The results were qualitatively similar to
Figure 4A, but the fan-out and semilinear networks performed better in this
figure because LHB retained linearity for a larger range of input than the
hyperbolic tangent function. In particular, compared at the same noise lev-
els, the crossover point of the semilinear and nonlinear networks with LHB
nonlinearity lay at a larger N than with the tangent hyperbolic nonlinearity.3

Because the nonlinear functions used in Figures 4A and 4B share the same
slope at the origin, the result shows that not only N and σ but also the
nonlinearity affect the crossover point of the semilinear and nonlinear
networks.

We should also note that when more biological neuron models are used,
it is even more difficult for the semilinear model to set the gain equal to
1 because the nonlinearity is not fixed but changes with the dynamical
input properties in those models. Hence, the semilinear memory requires
some elaborate additional mechanism to achieve full performance. Another
important and potentially testable difference between the semilinear and
nonlinear memory is how the memory lifetime, L, scales with the vari-
ance, v, of the network activity, L ∼ v−γ with some exponent γ . While the
semilinear memory provides γ = 1/2 from equation 2.18, the nonlinear
memory provides γ = 1 from equation 2.11.

3Although the semilinear network showed better performance than the nonlinear
network for the entire range of N examined in Figure 4B with σ = 0.1, the difference in
the scaling of the memory lifetime ensures a crossover at a larger network size.
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2.4 Synfire Chains Can Reliably Buffer Complex Spike Sequences of
Leaky Integrate-and-Fire Neurons. The abstract firing rate model stud-
ied in the previous sections was suitable for mathematical analyses but
was less biologically realistic. However, all the main properties explored
in the previous sections should hold even with more realistic models. The
key properties that yielded the nearly extensive sequential memory life-
time were the feedforward propagation of activity (which prevents stimuli
presented at different timings from mixing) and the attracting dynamics
(which implements error-correction). To illustrate this point, a feedforward
network of leaky integrate-and-fire (LIF) neurons was explored. Detailed
parameter studies were, however, not the scope of this letter.

A network of N = 4000 current-based LIF neurons was simulated (Dayan
& Abbott, 2001; Vogels & Abbott, 2005). The network consists of k = 10 inde-
pendent synfire chains, where each chain has L = 20 layers and n = 20 neu-
rons in each layer. The membrane dynamics of neurons i (i = 1, 2, . . . , N) is
described by

τ
dVi

dt
(t) = −Vi(t) + EL + xi(t) + μbg + σbgξi(t), (2.20)

where Vi is the membrane potential of neuron i, τ = 10 ms is the membrane
time constant, EL = −70 mV is the resting potential, xi is the input to neuron i
from other neurons in a local network, μbg = 7 mV is the mean background
input level, ξi is white gaussian noise of unit variance, and σbg = 5 mV
describes the magnitude of background input fluctuation. When the mem-
brane potential reaches the threshold value of Vth = −50 mV, the neuron
emits a spike, and the membrane potential is reset to Vreset = −70 mV. After
the spike, the membrane potential is fixed at Vreset for the duration of the
refractory period, τre f = 2 ms. Input to neuron i is calculated according to

τx
dxi

dt
(t) = −xi(t) +

N∑
j=1

∑
f

wi jδ
(
t − t( f )

j

)
(2.21)

where τx = 5 ms, wij is the synaptic strength from neuron j to i, δ(t) is the
Dirac delta function, and t( f )

j is the fth spike time of neuron j. This means
that when neuron i receives a spike from neuron j at t( f )

j , its membrane
potential is depolarized by wi j[e

−(t−t( f )
j )/τ − e−(t−t( f )

j )/τx ]/(τ − τx) for t > t(t)
j .

We measure the synaptic strength wij using the peak amplitude of the exci-
tatory postsynaptic potential, which is about wi j × 50 s−1 for the current set
of parameters. The synaptic strength, wij, takes a uniform nonzero value,
w, if the layer of neuron i is next to the layer of neuron j, and takes zero
otherwise. The feedforward synaptic strength between adjacent layers is
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Figure 5: A feedforward network of leaky integrate-and-fire neurons reliably
buffered spike patterns. (A) Top: Membrane potential of a single neuron. Middle:
Spike timing of all neurons in the network. The network consisted of k = 10
independent synfire chains, where each synfire chain had L = 20 layers and n =
20 neurons in each layer. The oblique patterns describe feedforward propagation
of synfire activity. Bottom: The population mean firing rate of all the neurons
averaged in 10 ms bins. (B) The spiking pattern of the first layers (filled circles)
was well preserved even until the final 20th layer (open circles). The spike
pattern of the final layers was shifted so that the spike overlap with the first
layers was maximized. The feedforward synaptic strengths were set to 1 mV.
Note that input pulses were somewhat degraded by background noise even in
the first layer. (C) The spike overlap with the input pulses in the 1st, 10th, and
20th layers plotted for different feedforward synaptic strengths.

set uniformly to 1.0 mV except in Figure 5C, where w is varied as a control
parameter. Each chain is independently stimulated by 10 Hz random Pois-
son pulses, on which all the neurons in the first layer are depolarized by
10 mV according to the time course of excitatory synaptic input.

Figure 5A shows the model behavior. The top panel shows the membrane
potential of a single neuron. The middle panel shows the spiking pattern
of all neurons, where neurons were indexed first within the same layer of
the same chain, then across chains, and finally across layers. The oblique
arrangements of spiking patterns in the middle panel demonstrate that
most of the synchronous firing patterns evoked by external input pulses
successfully reached the final layers in about 100 ms. The bottom panel
shows that the overall population firing rate of the network was kept at
about 10 Hz. Figure 5B shows the spike patterns of the first and last layers.
To show the similarity better, the spike time of the last layers was temporally
shifted so that the spiking activity in these two layers could be viewed closer
together. The figure demonstrates that the precise spike pattern was well
preserved even until the final layers. To quantify the similarity of two spike
trains (sums of Dirac delta functions) S1(t) and S2(t), we define the inner
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product 〈S1, S2〉 = ∫ T
0

∫ T
0 S1(t)D(t − t′)S2(t

′)dtdt′, using the entire duration
of simulations, T, and a smoothing kernel D(t) = exp(−t2/(2τ 2

D))/

√
2πτ 2

D
with τD = 10 ms. The overlap of the two spike trains is then measured,
using the correlation coefficient, by 〈S1, S2〉/

√〈S1, S1〉〈S2, S2〉. The overlap
of the external input pulses and the spiking activity in different layers
are compared more systematically in Figure 5C for various values of the
feedforward synaptic strengths, w. Note that the amplitude of external
input pulses to the first layers of the chains was always fixed at 10 mV. The
key parameter for the signal propagation was the effective input amplitude,
nw, which is the product of synaptic strengths and the number of neurons
in each layer. When this effective coupling strength was too small, the
activity could not be successfully propagated to the next layers, and when
the effective coupling strength was too strong, even a spontaneous firing
of a single neuron was sufficient to activate most of the neurons in the
next layer. For the network structure explored here, the best overlap was
achieved using about 1 mV of feedforward synaptic strength. The figure
suggests that the fine-tuning of the synaptic strength is not critical for the
memory lifetime because the difference between the overlaps in the 10th
and 20th layers did not expand rapidly as mistuning from the optimal
parameter value increased.

3 Discussion

I estimated the memory lifetime achieved by coupled nonlinear neurons.
In contrast to the previously proposed semilinear scheme that provided
the order

√
N memory lifetime (Ganguli et al., 2008), I have shown that

an order N/log N memory lifetime can be achieved by appropriately using
nonlinear dynamics. The derived asymptotic scaling was invariant to the
accuracy of the information buffered. The proposed nonlinear network
outperformed a previously proposed semilinear scheme in a wide range
of parameters, in particular, with a large number of neurons and large
noise. I have also demonstrated that the previously proposed semilinear
scheme is sensitive to the noise level (i.e., a small increase in the noise
level causes monotonic decay of the average activity) turning the order

√
N

memory lifetime to order 1. The nonlinear scheme proposed in this letter
uses large gain to prevent the activity from decaying and to alleviate the
accumulation of noise using error-correcting nonlinear dynamics. Because
the mathematical model studied here is general, the result that a network is
capable of buffering sequential input much longer than individual elements
is potentially applicable to other systems beyond neural networks, such as,
gene/protein and social networks.

We considered in this letter the sequential memory task that aims to re-
construct a whole dynamical sequence of input after some delay. Note that
this task is different from delayed matching working memory tasks (Fuster,
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1973; Goldman-Rakic, 1995), where a brief stimulus is presented only at
a certain time. The major difference is that stimuli presented at different
timings can interfere with each other under the sequential memory task.
This typically happens when recurrently connected networks are used to
buffer a sequence of input (Büsing, Schrauwen, & Legenstein, 2010; Lim
& Goldman, 2011; Toyoizumi & Abbott, 2011). For example, under the se-
quence generations by Hopfield-type networks (Hopfield, 1982; Kleinfeld,
1986; Sompolinsky & Kanter, 1986) or by winnerless competition networks
(Bick & Rabinovich, 2009; Seliger, Tsimring, & Rabinovich, 2003), the activ-
ity converges to one of the learned patterns, and the presentation of a new
pattern disrupts the current state. Hence, the delay line structure is often
considered for a sequential memory task to prevent the interference of sig-
nals presented at different timings (Ganguli et al., 2008). While nonlinear
attracting dynamics has been utilized for nonsequential working memory
tasks (Camperi & Wang, 1998; Goldman, Levine, Major, Tank, & Seung,
2003; Koulakov, 2001; Lisman, Fellous, & Wang, 1998), this study shows
that its error-correcting property also provides long-lasting memory for a
sequential memory task with a feedforward network architecture.

The feedforward network structure presented in this letter was stud-
ied in the context of synfire chains (Abeles, 1991; Aertsen, Diesmann, &
Gewaltig, 1996; Diesmann et al., 1999; Kumar et al., 2008; Rossum et al.,
2002; Vogels & Abbott, 2005), where precise temporal patterns of spikes are
their prominent characteristic. Temporally precise spiking patterns have
been observed across different brain areas and different recording condi-
tions (Hahnloser et al., 2002; Ikegaya et al., 2004; Ji & Wilson, 2007; Jin,
Ramazanoglu, & Seung, 2007; Pastalkova et al., 2008; Takahashi, Sasaki,
Matsumoto, Matsuki, & Ikegaya, 2010). There is also some experimental
evidence suggesting that the synfire chain is the underlying network archi-
tecture in the brain for generating precise temporal sequences (Long, Jin, &
Fee, 2010). Although the effect of noise on the gain was systematically stud-
ied (Herrmann et al., 1995), the contribution of occasional large noise that
blocks or spontaneously ignites synfire activity (Bienenstock, 1995; Tetzlaff,
Geisel, & Diesmann, 2002) was not theoretically analyzed. In particular,
the trade-off between the length of the chain and the reliability of activity
being propagated for a fixed total number of neurons was not elucidated.
I demonstrated that such occasional large noise prevents synfire chains
from achieving an extensive memory lifetime, and the resulting ∼N/log N
memory lifetime is the direct consequence of such noise.

Reservoir computing (Jaeger & Haas, 2004; Maass, Natschläger, &
Markram, 2002) was recently proposed as an attractive paradigm for uni-
versal and dynamical computation. This is one candidate network that can
also perform sequential memory tasks (White et al., 2004). According to
this paradigm, dynamical input is provided to a pool of neurons, called a
reservoir, which buffers the history of the input and extracts many useful
features of the input sequence. Some linear readout units are placed on top
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of this reservoir and trained for a specific task, for example, reconstruct-
ing past input, while the reservoir itself remains task nonspecific. One of
the fundamental aspects of reservoir computing is that a reservoir buffers
past input sequences so that the readout unit can successfully combine the
history of the input stimuli. Although randomly connected networks are
commonly used as the reservoir, the optimal structure of the reservoir is not
yet known (Lazar, Pipa, & Triesch, 2009). The current study has shown that a
feedforward structure is suitable for buffering sequences of events. Despite
its benefit for sequential memory, making the whole network into a feedfor-
ward network is probably not a good idea. In addition to memory, it is also
important for the reservoir to map input to a high-dimensional “feature
space” so that a linear readout has access to useful features (Bertschinger
& Natschl, 2004; Büsing et al., 2010; Jaeger & Haas, 2004; Maass et al., 2002;
Sussillo & Abbott, 2009). The current study suggests instead that it would
be a promising approach to embed feedforward chains with high gain as a
memory-specific subnetwork for a wide class of tasks that requires a long-
lasting sequential memory. This guarantees a memory lifetime that is nearly
proportional to the size of that memory-specific subnetwork. I note that a
straightforward implementation of randomly and recurrently connected
nonlinear neurons achieved a memory lifetime of only order log N (Büsing
et al., 2010). In view of the fact that the best possible scaling of memory life-
time is ∼N for nonsparse input sequences (Ganguli & Sompolinsky, 2010),
it is clear that the error-correcting feedforward network studied in this let-
ter with ∼N/log N memory lifetime is a promising candidate for general
dynamical computations requiring a recent history of activity.
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