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COMMENTARY

Ordering in heterogeneous connectome weights for visual 
information processing
Taro Toyoizumia,b,1

What defines ourselves? People believe that neuronal circuits 
in the brain characterize who we are and how we behave. 
Following the triumph of the Human Genome Project, con-
nectomics projects started as the next big biology initiative 
to map out the wiring diagrams between neurons in the 
brain. Since the completion of the first connectome of a tiny 
worm, Caenorhabditis elegans, in 1986 (1), large-scaled con-
nectome data have been accumulated from nanoscale to 
macroscale across different animal species (2). However, 
understanding these data remains challenging (3). The rea-
sons include the difficulty in identifying important parame-
ters in high-dimensional observations, data variability across 
experimental conditions, and relating the anatomical struc-
ture to brain function. These problems also exist if we focus 
on the connectome data from the primary visual cortex, V1, 
of mice (4–6). The connection statistics differ depending on 
the source and target cell types across cortical layers. Even 
within the same classification type, some statistics deviate 
significantly across datasets. Thus, finding general rules is 
challenging. Finally, it is nontrivial to understand how the 
anatomical circuit is related to visual information processing. 
In PNAS, Kraynyukova et al. (7) conducted model-based anal-
yses that address these problems.

Kraynyukova et al. studied the so-called stabilized supralin-
ear network (SSN) model (8). It consists of (Fig. 1, Left) the excit-
atory, E, and inhibitory, I, neural populations in V1 that receive 
input from the visual thalamus (dorsal lateral geniculate 

nucleus, i.e., dLGN). Each population is characterized by its firing 
rate rX (X is either E or I), which monotonically and supralinearly 
increases with its synaptic input, given in the form of excitation 
minus inhibition. The model has six connection weights: two 
thalamocortical weights, gE and gI, to and four cortical weights, 
JEE, JEI, JIE, and JII, between the two cortical populations. In addi-
tion, the model has a power exponent n that describes the 
nonlinearity of the two cortical populations. Kraynyukova et al. 
performed in vivo electrophysiological recordings of mice V1 
and dLGN neurons in response to the presentation of visual 
grating stimuli with various contrast levels and orientations to 
fit this SSN model. They quantified, for each of the dLGN and 
V1 putative excitatory and inhibitory populations, the popula-
tion response by averaging the corresponding neurons’ two-di-
mensional receptive field, i.e., the firing rate profile, after 
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Fig. 1. (Left) A diagram of the SSN model of V1 (Kraynyukova et al., 2022). The cortical excitatory population (E: orange circle) and inhibitory population  
(I: light green circle) receive input from dLGN with weights gE and gI, respectively. The four types of cortical weights connecting the two populations are denoted 
as JEE, JEI, JIE, and JII, where JEI describes the weights from I to E, for example. The line width of the thalamocortical and corticocortical connections is proportional to 
the mean estimated weight based on the in vivo data. In the steady state, the firing rate rX of population X (X is either E or I) is given by rX = [ JXE rE - JXI rI + gX T ]+

n, 
where T is the dLGN firing rate, the operation [·]+ transforms a negative argument to zero so that the firing rate is positive, and n is a nonlinear exponent. (Right) 
Kraynyukova et al. fitted the SSN model to the in vivo data. They found specific ordering among them (Top). This ordering was verified using three in vitro connectome 
datasets (Bottom). The transparency level of the inequality signs reflects the consistency among the datasets. In addition, they got n ~ 1.9, which indicates that 
the input–output function is supralinear.
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aligning the neurons’ preferred orientations. The orientation 
tuning in these populations was contrast invariant to good accu-
racy (i.e., the shape of orientation tuning did not change with 
the contrast), which warrants the examination of their popula-
tion contrast response separately from their orientation tuning. 
Given the dLGN population contrast response, they fit the 
seven parameters of the SSN model to reproduce the V1 pop-
ulation contrast response. This analysis consistently gives a 
specific ordering of inferred weights (Fig. 1, Right). Remarkably, 
this ordering is consistent with the connectome datasets (4–6) 
despite the variability in individual weights.

The nonlinear exponent n of the SSN model also plays a 
crucial role. When a linear input–output function is used (i.e., n 
= 1) instead, the inferred weights follow dissimilar ordering from 
the connectome data. This result argues that the simple SSN 
model involving only the two major cortical populations is suit-
able for relating contrast response in V1 and the connectome 
data. Theoretically, the supralinear input–output function 
increases the cortical firing rate progressively greater than the 
firing rate of the thalamus at higher contrast. Consequently, 
the network is mainly external-input-driven at low contrast and 
cortical-input-driven at high contrast. The network is said to 
operate as an inhibition-stabilized network (ISN) (9–11) in the 
latter case if the network activity diverges (at least until another 
stabilization mechanism kicks in) under the blockade of inhib-
itory activity due to its strong recurrent excitation. ISNs have a 
salient feature, a.k.a., the paradoxical effect, where an increase 
in the input to the inhibitory population transiently increases 
its activity but subsequently reduces both the excitatory and 
inhibitory activity. This prediction was experimentally verified 
(12) across cortical areas. While alternative mechanisms, such 
as the disinhibition mechanism that involves more than two 
populations, are not excluded (11, 13, 14), the ISN regime is a 
simple and attractive mechanism that reproduces the normal-
ization and surround suppression properties commonly 
observed in the cortex (15). Kraynyukova et al. showed that 
their fitting yields ISN at >4% contrast level, suggesting that ISN 
properties should contribute to a variety of visual stimuli.

The findings of Kraynyukova et al. are attractive because 
it shows a robust ordering of connectome weights 

associated with the visual contrast response even though 
individual weights are highly variable, arguing for the impor-
tance of supralinear contrast response in V1. But how can 
we understand the variability in connectome weights fur-
ther? Possible reasons for the variability include a bias and 
a finite number of samples in each dataset. Unbiased and 
infinite-size data are elusive. Moreover, the distribution of 
individual synaptic strength is often heavy-tailed (16, 17), 
hampering the convergence of the empirical mean with the 
sample size. The variability may also reflect the animal’s 
experience and developmental trace (18) or transient 
changes in the circuit properties like representational drift 
(19) and intrinsic synaptic dynamics (17). Another candidate 
for the variability is the scaling property of the SSN model. 
In the SSN model, for any positive real number a, multiplying 
all cortical weights by factor a1/n−1 and all thalamocortical 
weights by factor a1/n simply changes both the cortical excit-
atory and inhibitory firing rates by the factor a (c.f., the 
steady-state equation in Fig. 1 caption). This transformation 
corresponds to the invariant subspace of the SSN parame-
ters. More generally, there are diverse solutions (i.e., config-
urations of biological elements) that can achieve a certain 
network function. This diversity has been suggested to be 
important for the resilience of network functions and recov-
ery from failures (20). The solutions to achieving a certain 
network function could be clustered or scattered in the net-
work parameter space. Understanding the distribution of 
solutions is also important in machine learning as it describes 
if a solution is easily found (21). Analyses of deep networks 
suggest that a learning path may arbitrarily follow one of 
many equally good paths involving multiple branching points 
or follow a highly restricted path if structural pruning is 
applied a priori. Interestingly, given that structural pruning 
is successful, learning is faster and achieves higher general-
ization capability than without pruning (22). Thus, the con-
nectome variability around good enough solutions may be 
due to arbitrary fluctuations, highly structured individual 
differences, or their mixture. The finding of Kraynyukova et 

al. is a major step toward the understanding of 
connectome variability in identifying general 
rules underlying network functions.
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