
Available online at www.sciencedirect.com

ScienceDirect
Current Opinion in

Neurobiology
Perspective
Computational role of sleep in memory reorganization
Kensuke Yoshida1,2 and Taro Toyoizumi1,2
Abstract

Sleep is considered to play an essential role in memory reor-
ganization. Despite its importance, classical theoretical models
did not focus on some sleep characteristics. Here, we review
recent theoretical approaches investigating their roles in
learning and discuss the possibility that non-rapid eye move-
ment (NREM) sleep selectively consolidates memory, and
rapid eye movement (REM) sleep reorganizes the represen-
tations of memories. We first review the possibility that slow
waves during NREM sleep contribute to memory selection by
using sequential firing patterns and the existence of up and
down states. Second, we discuss the role of dreaming during
REM sleep in developing neuronal representations. We finally
discuss how to develop these points further, emphasizing the
connections to experimental neuroscience and machine
learning.
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Introduction
Sleep is an essential physiological state conserved across
a variety of species, including nematodes, flies, and
mammals. Sleep is considered to reorganize memory of
awake experiences into an efficient form [1e3],
inducing consolidation and assimilation of experiences
and inspiring inference from learned relationships
[4e7]. Given its evolutionary conservation, sleep is ex-

pected to play an essential role in learning that cannot
be achieved during wakefulness.
www.sciencedirect.com
Some sleep characteristics have been well explored
theoretically. During sleep, our brain lacks sensory
inputs but internally generates neural activity.
Mimicking these characteristics, in the Helmholtz ma-
chine composed of recognition and generative connec-
tions between the input and hidden layers, learning of
recognition connections is driven during the sleep phase
by neural activity caused by its generative model instead
of real sensory inputs, while learning of generative
connections is driven during the wake phase by sensory
inputs [8,9]. This suggests that the combination of
wakefulness and sleep might contribute to extracting

hidden input structures. Another sleep characteristic is
that firing patterns about awake experiences are
replayed during sleep [10,11]. Mimicking this, more
recent studies suggested that replays, which are not
necessarily created by generative models but are
sampled from the memory buffer (storage of previous
inputs), are effective for preventing catastrophic inter-
ference and stabilizing learning [12,13]. While these
studies have demonstrated the utility of memory replays
in artificial machine learning methods, other studies
begin to propose the computational roles of more

detailed sleep characteristics.

Sleep is divided into non-rapid eye movement (NREM)
and rapid eye movement (REM) sleep with different
characteristics. NREM sleep is characterized by slow
waves, low-frequency (0.5e4.0 Hz) components of EEG
and local field potential, which accompany synchronous
transitions of cortical neurons between up states with
higher membrane potential and down states with lower
membrane potential (Figure 1a) [14]. Slow waves have
been considered to have causal influences on memory

reorganization, especially when they are temporally
coupled with neuronal reactivation of awake experiences
[4,10,15e19]. While the role of the homeostatic syn-
aptic regulation during sleep in memory consolidation
has been investigated [20e22], the function of slow
waves has not been sufficiently addressed theoretically.
On the other hand, REM sleep is dominated by high-
frequency neuronal activities as with wakefulness but
accompanies dreaming and hallucinatory experiences
created in our brain [23]. The involvement of REM
sleep in associative thinking and creativity has been

suggested mainly in human studies [3,24]. In addition, a
recent study in rodents suggested that the communi-
cation from the medial entorhinal cortex to the anterior
cingulate cortex during REM sleep is critical for the
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Figure 1

Slow waves might selectively consolidate memory by arranging cortical replays. a. Cortical neurons transit between up and down states synchronously
with slow waves. During up and down states, the membrane potential of each neuron is higher and lower, respectively. Replays of spike sequences
(orange) are promoted, especially during the transition from down to up states (gray shadow). b. Theoretical model in Ref. [26]. Sequential stimulations in
a one-dimensional chain of cortical neurons (from ‘A’ to ‘E’) strengthen the synaptic weights in one direction (shown in red) during training, which is further
strengthened during post-learning sleep. c. When two opposing patterns (one from ‘A’ to ‘E’ and one from ‘E’ to ‘A’) are trained, replays during slow waves
allow two sequences to coexist by assigning distinct subsets of neurons (shown in magenta and green) for the two directions [27]. d. Slow waves might
improve computation by learning appropriate poly-synaptic paths. Such effects could be beneficial for finding the shortest path from the start neuron (S) to
the target neuron (T) in a recurrent network (shown in green) [29].
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emergence of inference [7]. Therefore, how REM sleep
and dreaming promote learning needs to be theoreti-
cally investigated.

In this review, we discuss the possibility that NREM
sleep selectively consolidates memory and, based on it,
REM sleep creates efficient neuronal representations.
First, we consider that two features of slow waves:
sequential firing patterns along the propagation of slow
waves and the existence of up and down states may

contribute to the selection for memory consolidation.
Second, we discuss the role of dreaming during REM
sleep in developing efficient representations of mem-
ories. Dreaming created by our brain might help to
explore and compare more global features of memory
patterns. Thus, the NREM and REM sleep character-
istics may synergistically enhance learning.
Current Opinion in Neurobiology 2023, 83:102799
Slow waves selectively consolidate memory
within low-dimensional neuronal space
The transitions from down to up states of slow waves in

cortical neurons propagate as a traveling wave, which
evokes sequential firing patterns in neurons (Figure 1a).
This might be involved in memory selection by
consolidating memories that are compatible with low-
dimensional waves [25,26]. In the setting of [26],
sequential stimulations of neurons in the cortex during
wakefulness form a one-dimensional chain of synaptic
weights that facilitates sequential activity in one direc-
tion (Figure 1b). During subsequent sleep, slow waves
promote replays of the learned sequence and further
strengthen these synapses (Figure 1b). Awake-like

asynchronous firing patterns are not as efficient as syn-
chronous slow waves in consolidating the learned
sequence. Coherent waves expedite learning by
www.sciencedirect.com

www.sciencedirect.com/science/journal/09594388


Computational role of sleep Yoshida and Toyoizumi 3
efficiently promoting stereotypical neural activity pat-
terns. These results suggest that memory can be
strengthened using slow waves. A subsequent study
further suggested the effects of slow waves on protect-
ing against catastrophic forgetting in a similar setup
[27]. When the model learns one direction of neural
activity along layers and its reverse direction using the
typical asymmetric spike-timing-dependent plasticity

(STDP) time window, their effects interfere with each
other. However, spontaneous replays toward both di-
rections induced by slow waves allow sequences with
opposing directions to coexist by assigning distinct
subsets of neurons for the two directions (Figure 1c).
Another study also pointed out that replays induced by
slow waves could improve visual classification [28].
These studies proposed that slow waves efficiently
select memories to be consolidated by promoting
spontaneous replays compatible with their low-
dimensional waves. This could also help to realize re-

plays without remembering all inputs in a memory
buffer, which is important in machine learning [12].

Another model proposed the computational benefits of
slow waves on goal-directed behavior [29]. This study
suggested that the combination of slow waves and a
reward-modulated update rule of synaptic weights en-
ables neuronal networks to efficiently learn polysynaptic
paths that involve multiple synapses in between
(Figure 1d). With awake-like asynchronous neuronal
activity patterns, intact sequences to a distant target

neuron rarely appear. However, with the aid of slow
waves that promote sequential activity spreading to
distant neurons, the reward-modulated synaptic update
rule could induce the strengthening of synaptic weights
along the paths. Further, repetitive activation of neurons
by slow waves enables an efficient search over various
candidate paths and could replace an initial detour path
with a shortcut path that increases reward by achieving
shorter behavioral latency (Figure 1d). This result im-
plies that slow waves can consolidate memory in a form
that is useful for task solving.

In summary, these models show that slow waves can
facilitate selective memory consolidation by confining
replays within low-dimensional neuronal space. The
restriction to the low-dimensional space might intro-
duce inductive bias for assuring spatial continuity of
neural activity and expediting learning. Although these
methods have not yet been implemented in practical
machine learning tasks, they constitute interesting
computational hypotheses about the benefit of sleep
in learning.

Multiple states in slow waves coordinately
reorganize memory
A recent theoretical study proposes that synaptic plas-
ticity depends on states during slow waves [30]. This
study adopted a normative approach based on the idea
www.sciencedirect.com
that biological systems have evolved to achieve opti-
mality in some aspects [31,32] and especially investi-
gated the possibility that synaptic changes are
optimized for maximizing information transmission be-
tween neurons. This idea is theoretically formulated by
the information maximization (infomax) synaptic plas-
ticity that changes synaptic strength for increasing the
mutual information (quantifying “amount of trans-

mitted information” in information theory) between
presynaptic and postsynaptic spike trains (Figure 2a)
[33]. The infomax synaptic plasticity differs in up and
down states of slow waves and also depends on their
spatial wavelength. First, the infomax synaptic plasticity
is biased toward synaptic weakening when the baseline
postsynaptic firing rate is high in up states (Figure 2b).
This effect is because the cost of strengthening a syn-
apse is greater than its benefit for information trans-
mission in the up states where frequent background
inputs from many synapses degrade information trans-

mission by each synapse (i.e., at a low signal-to-noise
ratio). Second, the infomax synaptic plasticity predicts
that global up and down states should induce more
synaptic strengthening than local up and down states,
respectively (Figure 2b). This effect is again explained
by the weakening bias of the infomax synaptic plasticity
at higher baseline postsynaptic firing rate. In the
excitatory-inhibitory network model that exhibits slow
waves, surrounding neural activity increases and de-
creases the baseline firing rate of neurons at the center
in their down states and up states, respectively

(Figure 2c). The cortical interaction is excitation
dominated in down states but inhibition dominated in
up states because inhibitory neurons are assumed to
have a steeper rise of gain with input than excitatory
neurons. Hence, the activity of the surrounding neurons
suppresses that of central neurons in global up states but
facilitates it in local down states (Figure 2c). This sur-
round suppression property is a reminiscent feature of
stabilized supralinear networks [34e36] that has gained
several experimental supports. This indicates that the
global up and down states have lower firing rates than
the local up and down states, respectively. Hence, the

infomax synaptic plasticity predicts that synaptic
changes should be positively biased in both up and down
states if surrounding cortical areas take the same state as
the center (i.e., in global up and down states). Indeed,
these predictions are consistent with two recent rodent
experiments [18,37].

Furthermore, integrating synaptic changes in down and
up states might exert a delicate selection mechanism for
memory consolidation. A recent theoretical study sug-
gested that the formation of cell assemblies (i.e., coac-

tive neuronal subpopulations with strong connections in
between) depends on inhibition strength. It proposed
that a network with dominant excitatory interactions
rapidly forms nonspecific cell assemblies that recruit
even non-stimulated neurons, while that with dominant
Current Opinion in Neurobiology 2023, 83:102799
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Figure 2

Model of the state-dependent synaptic plasticity based on information maximization. a. The model suggests that sleep might induce optimal synaptic
changes for maximizing mutual information between presynaptic and postsynaptic spike trains. The infomax plasticity is formulated by increasing mutual
information I under the constraint of synaptic weight cost F. b. The model predicts that baseline firing rates modulate optimal synaptic plasticity. Therefore,
the optimal synaptic plasticity and memory reorganization depend on the up and down states of global and local slow waves. These differences are
consistent with previous experimental findings [18,37]. c. Distinct effects of the surrounding inputs during up and down states in an excitatory-inhibitory
network model. Due to the supralinear transfer functions of neurons, inputs from surrounding populations suppress the excitatory firing rates in the center
during up states (shown as an orange line), which is known as surround suppression, while they facilitate the excitatory firing rates in the center during
down states (shown as a blue line). This property, the so-called stabilized supralinear property, has been experimentally supported [34–36]. As a result,
excitatory firing rates are expected to be higher in local up and down states than global up and down states, respectively. Furthermore, this property
implies the possibility that the externally driven neural activity spreads to surrounding populations during down states while it is restricted to the center
during up states, which might lead to different spatial spreads of cell assemblies.
Panels a and b are modified from Ref. [30].
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inhibitory interactions slowly forms more specific ones
that selectively recruit only stimulated neurons [38].
Considering the stabilized supralinear property of the
slow-wave model described above [30], similar differ-

ences may be observed between the down and up states
of NREM sleepedown states may promote the forma-
tion of nonspecific cell assembly rapidly compared with
up states. While many experimental studies about
memory reorganization have focused on neuronal activ-
ities during up states [18,19,39], a recent experimental
study reported that neuronal activities during down
states are also related to hippocampal ripple activities
and, thus, memory consolidation [40]. Hence, up and
down states of slow waves with distinct synaptic
Current Opinion in Neurobiology 2023, 83:102799
plasticity and excitatory-inhibitory balance may play
complementary roles in memory consolidation. For
example, up states might reorganize normal memory
with higher specificity, while down states might pro-

mote the consolidation of crucial memory, such as life-
threatening events, rapidly with lower specificity. It is
an interesting future research topic to examine the more
specific division of roles in these states.

Learning representations by dreaming
during REM sleep
Dreaming, often accompanied by REM sleep, is appar-
ently not just a replay of past experiences but more a
creative experience generated by our brain [41].
www.sciencedirect.com
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Although the detailed mechanism and content of
dreaming are unknown, it is expected to be created by
combining our previous experiences. How these imagi-
nations could improve the brain’s computation consti-
tutes an attractive research topic. Previous studies have
proposed that REM sleep might contribute to creatively
discovering hidden associations [3,24]. In this section,
we consider the hypothesis that dreams during REM

sleep promote exploring more global structures of the
input space by generating imaginary combinations of
experiences to find efficient representations that reflect
a possible relationship between remote memories
(Figure 3a). We review neuroscience studies about
dreaming and state-of-the-art representation learning
methods in the following paragraphs to explore poten-
tial ties.

One recent study [42] addressed the role of dreams by
constructing a cortical implementation of generative

adversarial networks (GANs), a successful generative
model in machine learning by training a ‘generator’ to
fool a ‘discriminator’ that learns to distinguish fake and
real data [43] (Figure 3b). The model proposes a
learning rule of feedforward (from lower to higher) and
feedback (from higher to lower) synaptic connections.
During wakefulness, both feedforward and feedback
pathways learn similarly to the autoencoder [44] by
compressing sensory input into high-level representa-
tion and reconstructing the original sensory input based
on the high-level representation. During NREM sleep,

low-level sensory representation is generated from re-
plays by the feedback pathways with added noise, and
the feedforward pathways learn to reconstruct the
Figure 3

Dreaming might contribute to forming efficient cortical representations. a. Dre
cortical representations. Dreaming might contribute to discovering possible as
possibility that forming cortical representations is affected by ‘adversarial drea
sleep, inspired by GANs, the model trains a discriminator (feedforward projec
jection) to fool it. During NREM sleep, the feedforward projection is trained to r
feedback transformations are perturbed. During wakefulness, the feedforward
in a lower cortical area.

www.sciencedirect.com
original high-level representation. During REM sleep,
which is termed ‘adversarial dreaming,’ feedback path-
ways convert ‘creative dreams,’ i.e., fused memory, into
low-level sensory representation, and feedforward
pathways process it to judge if it is a dream. The feed-
forward pathways learn to discriminate correctly
(‘discriminator’), and the feedback pathways learn to
fool them (‘generator’). The NREM stage adds

robustness to the high-level representation, and the
REM stage improves the object-identity classification of
sensory input. This study implies that the synthesized
data explored by dreaming during REM sleep could
contribute to forming representations.

Other studies in machine learning also provide hints
about the possible roles of dreaming. It has been pointed
out that negative samples in contrastive learning would
be biologically implemented during sleep [45].
Contrastive learning is another powerful representation

learning method in machine learning [46], based on the
idea that similar data (termed ‘positive sample’) should
be embedded close to each other, whereas dissimilar
data (termed ‘negative sample’) should not. The
augmented version of the original data and neighboring
epochs in the video frames are often used as positive
samples, and other irrelevant data are often used as
negative samples. Although positive samples are
considered easily realized in the brain by extracting
neighboring frames from our experiences, negative
samples seem relatively difficult to implement.

Dreaming, in which inconsistent episodes are neigh-
boring in time series, might provide combinations of
data that work as negative samples. Therefore, dreaming
aming synthesized during REM sleep might play a role in forming efficient
sociations and distinctions between memories. b. The model suggests the
ming’ during REM sleep and ‘replay’ during NREM sleep [42]. During REM
tion) to distinguish whether it is a dream and a generator (feedback pro-
eproduce representations in a higher cortical area under the condition that
and feedback projections are trained to reproduce original inputs provided

Current Opinion in Neurobiology 2023, 83:102799
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might improve the representation by exploring the
combinations that should be compared. Note that a
recent paper suggested the possibility that contrastive
learning could be realized during NREM sleep in the
framework of [42] (see Ref. [47] for details).

In summary, dreaming might contribute to forming
efficient neural information representations by

exploring and comparing more diverse combinations of
experiences than during NREM sleep. Such represen-
tation learning may have commonalities with machine
learning methods [42,43,45], but the range of distor-
tions involved might go beyond typical engineering
setups today. Another potential difference with machine
learning might lie in the alternation of NREM and REM
sleep several times in one night. NREM sleep consoli-
dates some recent memories with slow waves, and REM
sleep may find hidden relationships between these
memories and ostensibly unrelated others during

dreaming. The prior memory selection by NREM sleep
in iteration might help form relationships between
memories, avoiding false relationships.
Future perspective
Recent theoretical models suggest that slow waves
during NREM sleep regulate memory selection, and
dreaming during REM sleep form representations of
selected memories. Theoretical models serve as an
excellent guide to testing this hypothesis, bridging the
gap between experimentally observed sleep character-
istics and their computational roles. First, it would
become possible to chronically track neuronal repre-
sentation changes by using recently-developed methods
for recording many neuronal activities at a high temporal
resolution [48]. Such continual recording over sleep
periods would elucidate whether underlying changes in

neuronal circuits during NREM and REM sleep are
consistent with our hypothesis with the aid of theoret-
ical models. Second, the potential performance of the
methods incorporating sleep characteristics needs to be
studied. Although many sleep characteristics discussed
in this review are only implemented for proof-of-
principle demonstration, their computational benefits
in more practical tasks should be also addressed in the
future. In summary, cross-disciplinary investigation of
sleep functions will be a key to understanding how the
brain learns and discovering beneficial components for

improving machine-learning methods in the future.
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