Publications
- Y. Kinoshita and T. Toyoizumi, NeurIPS (2024), accepted. DOI:10.48550/arXiv.2404.09821
A provable control of sensitivity of neural networks through a direct parameterization of the overall bi-Lipschitzness
- T. Sawada, Y. Iino, K. Yoshida, H. Okazaki, S. Nomura, C. Shimizu, T. Arima, M. Juichi, S. Zhou, N. Kurabayashi, T. Sakurai, S. Yagishita, M. Yanagisawa, T. Toyoizumi, H. Kasai, and S. Shi, Science 385:1459-1465 (2024). DOI:10.1126/science.adl3043
Prefrontal synaptic regulation of homeostatic sleep pressure revealed through synaptic chemogenetics.
- Y. Terada and T. Toyoizumi, Proc. Natl. Acad. Sci. USA 121:18, e2312992121 (2024). DOI:10.1073/pnas.2312992121 PDF
Chaotic neural dynamics facilitate probabilistic computations through sampling
- L. Kang and T. Toyoizumi, Nature Communications 15, 647 (2024). DOI:10.1038/s41467-024-44877-0 PDF
Distinguishing examples while building concepts in hippocampal and artificial networks.
- H. K. Chan and T. Toyoizumi, Scientific Reports 14, 657 (2024). DOI:10.1038/s41598-023-50529-y PDF
A multi-stage anticipated surprise model with dynamic expectation for economic decision-making
- K. Yoshida and T. Toyoizumi, Current Opinion in Neurobiology 83, 102799 (2023). DOI:10.1016/j.conb.2023.102799 PDF
Computational role of sleep in memory reorganization
- A. Nejatbakhsh, F. Fumarola, S. Esteki, T. Toyoizumi, R. Kiani, and L. Mazzucato, Physical Review Research 5, 043211 (2023). DOI:10.1103/PhysRevResearch.5.043211 PDF
Predicting the effect of micro-stimulation on macaque prefrontal activity based on spontaneous circuit dynamics
- L. Kang and T. Toyoizumi, Physical Review E 108, 054410 (2023). DOI:10.1103/PhysRevE.108.054410 arXiv
Hopfield-like network with complementary encodings of memories
- K. Yoshida and T. Toyoizumi, PNAS Nexus 2, 1-13 (2023). DOI:10.1093/pnasnexus/pgac286 PDF
Information maximization explains state-dependent synaptic plasticity and memory reorganization during non-rapid eye movement sleep.
- Z. He and T. Toyoizumi, Neural Computation 35, 38-57 (2023). DOI:10.1162/neco_a_01542 PDF
Progressive interpretation synthesis: interpreting task solving by quantifying previously used and unused information
- T. Toyoizumi, Proc. Natl. Acad. Sci. USA 119:48, e2216092119 (2022). DOI:10.1073/pnas.2216092119 PDF
Ordering in heterogeneous connectome weights for visual information processing
- A. Marzoll, K. Shibata, T. Toyoizumi, I. Chavva, T. Watanabe, iScience 25, 105492 (2022). DOI:10.1016/j.isci.2022.105492 PDF
Decrease in signal-related activity by visual training and repetitive visual stimulation
- F. Fumarola, Z. He, Ł. Kuśmierz, and T. Toyoizumi, Physical Review Research 4, 033089 (2022). DOI:10.1103/PhysRevResearch.4.033089 PDF
Decoding silence in free recall
- G. Shimizu, K. Yoshida, H. Kasai, and T. Toyoizumi, Current Opinion in Neurobiology 70, 34-42 (2021). DOI:10.1016/j.conb.2021.06.002 PDF
Computational roles of intrinsic synaptic dynamics
- H. Kasai, N. E. Ziv, H. Okazaki, S. Yagishita, and T. Toyoizumi, Nature Reviews Neuroscience 22, 407-422 (2021). DOI:10.1038/s41583-021-00467-3 PDF
Spine dynamics in the brain, mental disorders and artificial neural networks
- T. Isomura and T. Toyoizumi, Nature Machine Intelligence 3, 434-446 (2021). DOI:10.1038/s42256-021-00306-1 PDF
Dimensionality reduction to maximize prediction generalization capability
- Ł. Kuśmierz and T. Toyoizumi, Proc. Natl. Acad. Sci. USA 118:10, e2024297118 (2021). DOI:10.1073/pnas.2024297118 PDF
Infection curves on small-world networks are linear only in the vicinity of the critical point
- Y. Ito and T. Toyoizumi, PLOS Computational Biology 17, e1008700 (2021). DOI:10.1371/journal.pcbi.1008700 PDF
Learning poly-synaptic paths with traveling waves
- T. Isomura and T. Toyoizumi, Neural Computation 33, 1433-1468 (2021). DOI:10.1162/neco_a_01378 PDF
On the achievability of blind source separation for high-dimensional nonlinear source mixtures
- Ł. Kuśmierz, S. Ogawa, and T. Toyoizumi, Physical Review Letters 125, 028101 (2020). DOI:10.1103/PhysRevLett.125.028101 PDF Supplemental material
Edge of chaos and avalanches in neural networks with heavy-tailed synaptic weight distribution
- R. Legaspi and T. Toyoizumi, Nature Communications 10:4250 (2019). DOI:10.1038/s41467-019-12170-0 PDF
A Bayesian psychophysics model of sense of agency
- Ł. Kuśmierz and T. Toyoizumi, Physical Review E 100, 032110 (2019). DOI:10.1103/PhysRevE.100.032110 PDF
Robust random search with scale-free stochastic resetting
- J. Humble, K. Hiratsuka, H. Kasai, and T. Toyoizumi, Frontiers in Computational Neuroscience 13:38 (2019) DOI:10.3389/fncom.2019.00038 PDF
Intrinsic Spine Dynamics Are Critical for Recurrent Network Learning in Models With and Without Autism Spectrum Disorder.
- T. Isomura and T. Toyoizumi, Scientific Reports 9:7127 (2019). DOI:10.1038/s41598-019-43423-z PDF
Multi-context blind source separation by error-gated Hebbian rule
- R. Legaspi, Z. He and T. Toyoizumi, Current Opinion in Behavioral Sciences 29:84-90 (2019). DOI:10.1016/j.cobeha.2019.04.004 PDF
Synthetic Agency: Sense of Agency in Artificial Intelligence
- E. Munro Krull, S. Sakata and T. Toyoizumi, Frontiers in Neuroscience 13:316 (2019). DOI:10.3389/fnins.2019.00316 PDF
Theta oscillations alternate with high amplitude neocortical population within synchronized states.
- H. Okazaki, A. Hayashi-Takagi, A. Nagaoka, M. Negishi, H. Ucar, S. Yagishita, K. Ishii, T. Toyoizumi, K. Fox, and H. Kasai, Neuroscience Letters 671, 99-102 (2018). DOI:10.1016/j.neulet.2018.02.006 PDF
Calcineurin knockout mice show a selective loss of small spines.
- C. L. Buckley and T. Toyoizumi, PLOS Computational Biology 14, e1005926 (2018). DOI:10.1371/journal.pcbi.1005926 PDF Supporting information
A theory of how active behavior stabilizes neural activity: neural gain modulation by closed-loop environmental feedback
- T. Isomura and T. Toyoizumi, Scientific Reports 8:1835 (2018). DOI:10.1038/s41598-018-20082-0 PDF Supplementary information
Error-Gated Hebbian Rule: A Local Learning Rule for Principal and Independent Component Analysis
- T. Danjo, T. Toyoizumi, and S. Fujisawa, Science 359, 213-218 (2018). DOI:10.1126/science.aao3898 PDF
Spatial representations of self and other in the hippocampus
- Ł. Kuśmierz and T. Toyoizumi, Physical Review Letters 119, 250601 (2017). DOI:10.1103/PhysRevLett.119.250601 PDF
Emergence of Lévy walks from second-order stochastic optimization
- Ł. Kuśmierz, T. Isomura, and T. Toyoizumi, Current Opinion in Neurobiology 46, 170-177 (2017). DOI:10.1016/j.conb.2017.08.020 PDF
Learning with three factors: modulating Hebbian plasticity with errors
- S. Tajima, T. Mita, D. Bakkum, H. Takahashi, and T. Toyoizumi, Proc. Natl. Acad. Sci. USA 114, 9517-9522 (2017). DOI:10.1073/pnas.1705981114 PDF
Locally embedded presages of global network bursts
- T. Keck, T. Toyoizumi, L. Chen, B. Doiron, D. E. Feldman, K. Fox, W. Gerstner, P. G. Haydon, M. Hubener, H.-K. Lee, J. E. Lisman, T. Rose, F. Sengpiel, D. Stellwagen, M. P. Stryker, G. G. Turrigiano, M. C. van Rossum, Philosophical Transaction of the Royal Society B 372, 1715 (2017). DOI:10.1098/rstb.2016.0158 PDF
Integrating Hebbian and homeostatic plasticity: the current state of the field and future research directions
- V. Jacob, A. Mitani, T. Toyoizumi, and K. Fox, Journal of Neurophysiology 117, 4-17 (2017). DOI:10.1152/jn.00289.2016 PDF
Whisker row deprivation affects the flow of sensory information through rat barrel cortex.
- H. Huang and T. Toyoizumi, Physical Review E 94, 062310 (2016). DOI:10.1103/PhysRevE.94.062310 PDF
Unsupervised feature learning from finite data by message passing: discontinuous versus continuous phase transition
- M. Lankarany, J. Heiss, I. Lampl, and T. Toyoizumi, Frontiers in Computational Neuroscience 10:110 (2016). DOI:10.3389/fncom.2016.00110 PDF Supplementary material
Simultaneous Bayesian estimation of excitatory and inhibitory synaptic conductances by exploiting multiple recorded trials
- T. Isomura and T. Toyoizumi, Scientific Reports 6:28073 (2016). DOI:10.1038/srep28073 PDF Supplementary information
A local learning rule for independent component analysis
- H. Huang and T. Toyoizumi, Physical Review E 93, 062416 (2016). DOI:10.1103/PhysRevE.93.062416 PDF
Clustering of neural code words revealed by a first-order phase transition
- S. Dasguputa, I. Nishikawa, K. Aihara, and T. Toyoizumi, NIPS Workshop on Modeling and Inference for Dynamics on Complex Interaction Networks (2015). PDF
Efficient signal processing in random networks that generate variability
- S. Tajima, T. Yanagawa, N. Fujii, and T. Toyoizumi, PLOS Computational Biology 11, e1004537 (2015). DOI:10.1371/journal.pcbi.1004537 PDF
Untangling brain-wide dynamics in consciousness by cross-embedding
- H. Huang and T. Toyoizumi, Physical Review E 91, 050101 (2015). DOI:10.1103/PhysRevE.91.050101 PDF
Advanced mean field theory of the restricted Boltzmann machine
- H. Shimazaki, K. Sadeghi, T. Ishikawa, Y. Ikegaya, and T. Toyoizumi, Scientific Reports 5:9821 (2015). DOI:10.1038/srep09821 PDF Supplementary information
Simultaneous silence organizes structured higher-order interactions in neural populations.
- T. Toyoizumi and H. Huang, Physical Review E 91, 032802 (2015). DOI:10.1103/PhysRevE.91.032802 PDF
Structure of attractors in randomly connected networks
- T. Toyoizumi, M. Kaneko, M. P. Stryker, and K. D. Miller, Neuron 84, 497-510 (2014). DOI:10.1016/j.neuron.2014.09.036 PDF
Modeling the dynamic interaction of Hebbian and homeostatic plasticity
- S. Tajima and T. Toyoizumi, Seitai-no-Kagaku 65, 478-479 (2014). DOI:10.11477/mf.2425200048 PDF
Understandig large-scale dynamical systems by the embedding theorem (in Japanese)
- T. Toyoizumi, H. Miyamoto, Y. Yazaki-Sugiyama, N. Atapour, T. K. Hensch, and K. D. Miller, Neuron 80, 51-63 (2013). DOI:10.1016/j.neuron.2013.07.022 PDF Supplemental information
A theory of the transition to critical period plasticity: inhibition selectively suppresses spontaneous activity.
- M. Lankarany, W. P. Zhu, M. N. S. Swamy, T. Toyoizumi, Frontiers in Computational Neuroscience 7:109 (2013). DOI:10.3389/fncom.2013.00109 PDF
Inferring trial-to-trial excitatory and inhibitory synaptic inputs from membrane potential using Gaussian Mixture Kalman Filtering
- S. Amari, H. Ando, T. Toyoizumi, and N. Masuda, Physical Review E 87, 022814 (2013). DOI:10.1103/PhysRevE.87.022814 PDF
State concentration exponent as a measure of quickness in Kauffman-type networks
- T. Toyoizumi, Neural Computation 24, 2678-2699 (2012). DOI:10.1162/NECO_a_00324 PDF Color figures
Nearly extensive sequential memory lifetime achieved by coupled nonlinear neurons
- T. Toyoizumi and L. F. Abbott, Physical Review E 84, 051908 (2011). DOI:10.1103/PhysRevE.84.051908 PDF
Beyond the edge of chaos: Amplification and temporal integration by recurrent networks in the chaotic regime
- J. Gjorgjieva, T. Toyoizumi and S. J. Eglen,
PLoS Computational Biology 5, e1000618 (2009). DOI:10.1371/journal.pcbi.1000618 PDF
Burst-time-dependent plasticity robustly guides ON/OFF segregation in the lateral geniculate nucleus.
- T. Toyoizumi and K. D. Miller, Journal of Neuroscience 29, 6514-6525 (2009). DOI:10.1523/JNEUROSCI.0492-08.2009 PDF Supplemental materials
Equalization of ocular dominance columns induced by an activity-dependent learning rule and the maturation of inhibition
- T. Toyoizumi, K. Rahnama Rad and L. Paninski,
Neural Computation 21, 1203-1243 (2009). DOI:10.1162/neco.2008.04-08-757 PDF Color figures
Mean-field approximations for coupled populations of generalized linear model spiking neurons with Markov refractoriness
- Y. Sato, T. Toyoizumi and K. Aihara, Neural Computation 19, 3335-3355 (2007). DOI:10.1162/neco.2007.19.12.3335 PDF
Bayesian inference explains perception of unity and ventriloquism aftereffect: identification of common sources of audiovisual stimuli.
- D. Sussillo, T. Toyoizumi and W. Maass, Journal of Neurophysiology 97, 4079-4095 (2007). DOI:10.1152/jn.01357.2006 PDF Supplementary material
Self-tuning of neural circuits through short-term synaptic plasticity
- T. Toyoizumi, J.-P. Pfister, K. Aihara and W. Gerstner, Neural Computation 19, 639-671 (2007). DOI:10.1162/neco.2007.19.3.639 PDF
Optimality Model of Unsupervised Spike-Timing-Dependent Plasticity: Synaptic Memory and Weight Distribution
- T. Toyoizumi, K. Aihara and S. Amari, Physical Review Letters 97, 098102 (2006). DOI:10.1103/PhysRevLett.97.098102 PDF
Fisher Information for Spike-Based Population Decoding
- T. Toyoizumi and K. Aihara, Journal of the Society of Instrument and Control Engineers 45, 741-747 (2006). DOI:10.11499/sicejl1962.45.74 PDF
A Synaptic Plasticity Rule Derived Based on the Information Maximization Principle and Firing Rate Control (A review in Japanese)
- J.-P. Pfister, T. Toyoizumi, D. Barber and W. Gerstner, Neural Computation 18, 1318-1348 (2006). DOI:10.1162/neco.2006.18.6.1318 PDF
Optimal Spike-Timing Dependent Plasticity for Precise Action Potential Firing
- T. Toyoizumi and K. Aihara,
International Journal of Bifurcation and Chaos 16, 129-136 (2006). DOI:10.1142/S0218127406014630 PDF
Generalization of the mean-field method for power-law distributions
- T. Toyoizumi, J.-P. Pfister, K. Aihara and W. Gerstner, Proc. Natl. Acad. Sci. USA 102, 5239-5244 (2005). DOI:10.1073/pnas.0500495102 PDF Supporting text
Generalized Bienenstock-Cooper-Munro rule for spiking neurons that maximizes information transmission
- T. Toyoizumi, J.-P. Pfister, K. Aihara and W. Gerstner,
Advances in Neural Information Processing Systems 17, 1409-1416 (2005). PDF
Spike-timing dependent Plasticity and mutual information maximization for a spiking neuron model
- T. Toyoizumi and K. Aihara, Transactions of the Institute of Electronics 86-D2, 959-965 (2003). PDF
Mean-field and Variational Methods for alpha-families (in Japanese)
- T. Sasamoto, T. Toyoizumi and H. Nishimori, Journal of Physics A 34, 9555-9567 (2001). DOI:10.1088/0305-4470/34/44/314 PDF
Statistical mechanics of an NP-complete problem: Subset sum